首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous research has suggested that spatial heterogeneities in soil moisture and/or vegetation cover promote the development of convective clouds. We examine the intensity of convective precipitation for the Midwest US Corn Belt in the summers of 1999 and 2000, which had contrasting synoptic circulation, atmospheric humidity, and soil moisture conditions. For days when synoptic scale atmospheric forcing is weak, we calculate a convective severity index (CSI) based on radar reflectivity composite values. Our results suggest that boundaries between soil types, and cropland and forest vegetation types in the western portion of the Corn Belt, enhance the development of convective precipitation. In the eastern part of the Corn Belt, less convection occurs, but we find a positive correlation between the intensity of convection and soil moisture conditions. Our results also demonstrate that the CSI is a simple yet effective technique for identifying where deep convection occurs relative to lighter precipitation.  相似文献   

2.
Simulations with the Consortium for Small Scale Modelling model were performed to investigate the impact of land surface inhomogeneities on the initiation of convection. A case from the African Monsoon Multidisciplinary Analysis campaign, 11 June 2006, was selected. On this day, a mesoscale convective system was observed and simulated. The simulation scenarios included a realistic and an increased initial soil moisture distribution as well as a homogeneous soil moisture and texture field. Land use and orography were the same in all runs. Heat and moisture budget calculations were applied to analyse the processes responsible for the evolution of pre-convective atmospheric conditions and convection-triggering thermally induced circulation systems. Convective cells were initiated in all experiments. However, the amount of cells, their origin, evolution, and precipitation amount differed. First shallow clouds were initiated over areas with higher sensible heat fluxes. The evolution of subsequent deep convection was triggered by secondary circulation systems caused by baroclinic conditions generated by clouded and unclouded regions. The further evolution of the precipitation cells strongly depended on convective inhibition in the areas the cells moved into.  相似文献   

3.
During the ‘Convective and Orographically-induced Precipitation Study’ (COPS) performed in summer 2007, deep convection developed on July 15, although convective available potential energy was only moderate and convective inhibition was high. Convection was restricted to an area east of the Black Forest crest. Data analysis revealed that the convection was triggered by different mechanisms. Due to a surface high which was situated east of the Black Forest and a surface low which approached the investigation area from the west, a mesoscale convergence zone was established between the two regions and moved eastwards. Secondly, high insolation favoured the development of slope and valley winds and high evapotranspiration resulted in an increase of moisture in the planetary boundary layer (PBL). The thermally driven circulation systems formed a convergence zone along the mountain crest. When the synoptically induced mesoscale convergence zone reached the Black Forest, the different convergence zones superimposed optimally, such that strong updraughts were observed above the mountain. These updraughts penetrated the PBL-capping inversion and nearly reached the level of free convection. About 15 min after the convergence zone had passed the Black Forest crest, first clouds developed east of it. While moving further eastwards, the convergence zone intensified and became visible as a north-south oriented cloud line in the satellite images. Some deep convective cells with precipitation formed within the cloud line. The dense COPS network allowed the capture of the position and characteristics of the convergence zone and explains why convection developed in some restricted areas only.  相似文献   

4.
Summary Convection and subsequent precipitation induced by the sea breeze circulations are often observed in the Florida peninsula during summer. In this study, the mechanisms of initiation and maintenance of the convective clouds and precipitation are investigated. A fully-compressible fine resolution non-hydrostatic mesoscale numerical model is used in this study. Surface energy and moisture budget were included in this model to simulate the diurnal cycle of ground surface temperature and wetness. The model also has a sophisticated boundary layer and explicit cloud physics. A sounding obtained from Orlando, Florida at 1110 UTC 17 July 1991 as part of the Convection and Precipitation Electrification (CaPE) experiment is used for initialization. The initial data for the model is kept in geostrophic and thermal wind balance. Several sensitivity tests were conducted to investigate the effects of different treatments of ground surface moisture and temperature on the model forecast of the convection and precipitation induced by the sea breeze circulations. The simulations agree reasonably well with the observations when both surface energy and moisture budget were included in the model to predict ground surface temperature and wetness. The surface moisture has a significant impact on the formation, strength, sustenance, and the location of convection and precipitation induced by the sea breezes.With 17 Figures  相似文献   

5.
一次锋面气旋云系中强对流云团的识别   总被引:3,自引:0,他引:3       下载免费PDF全文
利用NOAA-16/AMSU-B微波亮温资料和GOES-9光学遥感资料对2004年6月16日一次锋面气旋云系中的强对流云团进行识别, 尝试了NOAA-16/AM SU-B微波两窗区通道亮温、3个微波水汽通道间亮温差, GOES-9红外亮温阈值、水汽和红外通道亮温差、红外和水汽通道亮温多光谱逐个修改聚类等方法, 通过比较各种方法的识别结果, 分析各种识别技术的特点, 同时采用地面常规观测资料进行叠加, 对识别方法进行了验证。结果表明:微波对强对流云团均能较好识别, 但89 GHz通道亮温受地表影响较大, 不能很好剔除过冷水体, 150 GHz通道亮温与微波水汽通道间亮温差的识别结果较一致, 3个微波水汽通道间亮温差对阈值的依赖性相对较小; GOES-9红外亮温阈值因其随时空变化对识别结果会造成较大差别, 而水汽和红外通道亮温差对强对流云团能进行较好定位, 但识别范围较小, 多光谱逐个修改聚类方法对积雨云的识别效果较好, 且和NOAA-16/AMSU-B识别结果有较好的对应关系; 地面常规观测资料的叠加结果也说明, 多波段遥感资料对强对流云团的识别结果与当时的天气现象及积雨云状均有较好的对应关系。  相似文献   

6.
宋静  傅文伶 《气象科学》2021,41(1):119-127
利用天气雷达、地面自动站和微波辐射仪等多种气象探测资料,对2017年7月发生在成都双流机场的一次暴雨过程进行了分析。结果表明:此次暴雨发生在弱天气系统强迫条件下,大气层结呈现弱对流抑制、低抬升凝结高度、中等对流有效位能,湿层深厚,低层较暖且低层无急流影响。短时强降水由中尺度系统直接产生,午夜前的初始对流由高压西北部偏南暖湿气流与山体下滑冷气流相互作用,结合山前强水平温度梯度产生,之后在冷池和边界层暖湿气流作用下生成新的对流。产生强降水的回波结构密实,暖云特征突出,属于热带低质心降水系统。对抬升凝结高度、自由对流高度、湿层厚度等的分析表明,水汽条件较为极端,但由于系统整体属于前向传播,无明显的"列车效应",限制了实际降水效率。  相似文献   

7.
This paper investigates the impact of soil moisture-temperature feedback during heatwaves occurring over France between 1989 and 2008. Two simulations of the weather research and forecasting regional model have been analysed, with two different land-surface models. One resolves the hydrology and is able to simulate summer dryness, while the other prescribes constant and high soil moisture and hence no soil moisture deficit. The sensitivity analysis conducted for all heatwave episodes highlights different soil moisture-temperature responses (1) over low-elevation plains, (2) over mountains and (3) over coastal regions. In the plains, soil moisture deficit induces less evapotranspiration and higher sensible heat flux. This has the effect of heating the planetary boundary layer and at the same time of creating a general condition of higher convective instability and a slight increase of shallow cloud cover. A positive feedback is created which increases the temperature anomaly during the heatwaves. In mountainous regions, enhanced heat fluxes over dry soil reinforce upslope winds producing strong vertical motion over the mountain slope, first triggered by thermal convection. This, jointly to the instability conditions, favors convection triggering and produces clouds and precipitation over the mountains, reducing the temperature anomaly. In coastal regions, dry soil enhances land/sea thermal contrast, strengthening sea-breeze circulation and moist cold marine air advection. This damps the magnitude of the heatwave temperature anomaly in coastal areas, expecially near the Mediterranean coast. Hence, along with heating in the plains, soil dryness can also have a significant cooling effect over mountains and coastal regions due to meso-scale circulations.  相似文献   

8.
低压倒槽影响下积层混合云形成过程模拟研究   总被引:1,自引:1,他引:0  
利用多普勒雷达资料和中尺度天气预报模式wRF(Weather Research and Forecasting)模拟结果,对2009年5月9—10日发生在太原及其周边地区的一次积层混合云降水形成过程进行分析。结果表明,在积层混合云的形成初期,局地对流云得到发展,随着其强度不断增强,与周围云发生并合过程(包括局地单体对流的并合、积云团的并合和积层混合云内强中心的并合),形成范围较大的积层混合云云系。局地单体对流和积云团的并合可带来云体的爆发性增长,霰含量、雨水含量大幅增加。积层混合云内强中心的并合对降水强度影响不大,但有利于降水面积扩大。低压倒槽和弱冷锋是此次积层混合云形成和维持的主要影响因素。低压倒槽有利于低层大范围不稳定能量的积累,风向切变有利于近距离云团的发展和并合,山地动力和热力作用有利于局地对流单体、积层混合云内强中心的形成和加强。  相似文献   

9.
Summary A numerical mesoscale model (COAMPS) is used to study some of the features associated with the evolution of the kinematic, thermodynamic, and physical structure of the Alabama sea and bay breeze circulations and convections in weak shear environments based on five cases from Medlin and Croft (1998). The general and expected features and evolution of sea and bay breeze circulations are captured by the model simulations, including horizontal and vertical wind shifts, thermal contrast between land and water surface, vertical stability over water and land, return currents and moisture increase. The relationship of the circulations to specific synoptic flow regimes and local physiographic features was investigated. The sea breeze triggered convective cells are confirmed to have a preferred location according to the flow regime and local conditions. This result can assist the forecasters in understanding the anticipated convective cell initiation and development on a given day as related to sea and bay breeze cells as well as improve the short-term forecast accuracy of the location of thunderstorm initiation based on routine observations and subsequent convective activity. If local NWS office model a selective subset of cases then they can better visualize and forecast those cases operationally.  相似文献   

10.
The initiation of convective cells in the late morning of 24 June 2010 along the eastward extending ridge of the Dabie Mountains in the Anhui region,China,is studied through numerical simulations that include local data assimilation.A primary convergence line is found over the ridge of the Dabie Mountains,and along the ridge line several locally enhanced convergence centers preferentially initiate convection.Three processes responsible for creating the overall convergence pattern are identified.First,thermally-driven upslope winds induce convergence zones over the main mountain peaks along the ridge,which are shifted slightly downwind in location by the moderate low-level easterly flow found on the north side of a Mei-yu front.Second,flows around the main mountain peaks along the ridge create further convergence on the lee side of the peaks.Third,upslope winds develop along the roughly north–south oriented valleys on both sides of the ridge due to thermal and dynamic channeling effects,and create additional convergence between the peaks along the ridge.The superposition of the above convergence features creates the primary convergence line along the ridge line of the Dabie Mountains.Locally enhanced convergence centers on the primary line cause the initiation of the first convection cells along the ridge.These conclusions are supported by two sensitivity experiments in which the environmental wind(dynamic forcing) or radiative and land surface thermal forcing are removed,respectively.Overall,the thermal forcing effects are stronger than dynamic forcing given the relatively weak environmental flow.  相似文献   

11.
刘文婷  朱佩君 《大气科学》2018,42(5):1038-1054
登陆台风Matmo(2014)北侧弱回波区突发多条强对流雨带,造成严重影响。本文利用NECP/NCAR的FNL(Final)再分析资料,地面自动站加密观测资料、雷达拼图资料等对台风北侧连续出现的3条对流雨带的触发和发展过程进行研究。结果表明:初始对流是在弱的对流不稳定和条件对称不稳定条件下,由锋面强迫和地形抬升作用共同触发。接二连三发生的3条对流雨带是在台风北部高湿环境,长时间稳定的水汽辐合,明显的对流不稳定,局部弱条件对称不稳定条件下,由近地面辐合线在辐合稳定并加强后触发的,有利的环境和多层不稳定的叠加有利于雨带的发展和维持。先后触发对流雨带的3条辐合线在发生位置上相当接近。辐合线的形成一方面由海陆下垫面差异、江苏和山东南部海岸线曲率、台风风速随半径分布特点所决定;另一方面,辐合线2和3的形成还与它们北侧对流雨带的冷出流密切相关。对流带上的强降水中心往往对应着稳定的辐合中心,辐合中心主要位于风速大小梯度明显的位置上。而辐合线上的风速梯度主要受海岸线、地形附近的降水分布影响。  相似文献   

12.
The initiation processes of one of the initial convective cells near and on the east side of a dryline on 19 June 2002 during the IHOP 2002 field experiment in the central United States is analyzed in detail based on a high-resolution numerical simulation. Prominent horizontal convective rolls and associated near-surface moisture convergence bands [called roll convergence bands(RCBs) here] develop within the convective boundary layer(CBL) due to surface heating, in the hours leading to convective initiation(CI). The RCBs east of the dryline are advected toward the primary dryline convergence boundary(PDCB) by the southerly moist flow as the CBL deepens with time. Backward trajectories of air parcels forming the initial precipitating updraft of the convective cell are found to primarily originate at about 1–1.5 km above ground, within the upper portion of the shallower CBL earlier on. The representative air parcel is found to follow and stay on top of a surface RCB as the RCB moves toward the PDCB, but the RCB forcing alone is not enough to initiate convection. As this RCB gets close to the PDCB, it moves into a zone of mesoscale convergence and a deeper CBL that exhibits an upward moisture bulge associated with the PDCB. The combined upward forcing of the RCB and the mesoscale PDCB convergence quickly lifts the representative air parcel above its level of free convection to initiate convection. A conceptual model summarizing the CI processes is proposed.  相似文献   

13.
An ensemble of six 22-year numerical experiments was conducted to evaluate the ability of Regional Climate Model version 3 (RegCM3) to simulate the energy and water budgets of the midwestern United States. RegCM3 was run using two surface physics schemes: Integrated Biosphere Simulator (IBIS) and Biosphere-Atmosphere Transfer Scheme 1e (BATS1e), and two convective closure assumptions: Fritsch & Chappell (FC80) and Arakawa & Schubert (AS74). Boundary conditions were provided by the National Centers for Environmental Prediction-Department of Energy Reanalysis 2 dataset and the ECHAM5 general circulation model. A companion paper examines the American Midwest under future climate scenarios. Overall, the model that reproduces the observed seasonal cycles of the midwestern United States climate system best is RegCM3 using IBIS and the AS74 convective closure assumption. IBIS simulates shortwave radiation more accurately, while BATS1e simulates longwave radiation more accurately. Summer two-meter air temperature is overestimated by the combination of IBIS and the FC80 convective closure assumption. All models contain a wet bias and overestimate evapotranspiration during the spring. Total runoff, surface runoff, groundwater runoff, and root zone soil moisture are best simulated by RegCM3 using IBIS and the AS74 convective closure assumption. While BATS1e does capture the seasonal cycle of total runoff, gross errors in the partitioning of total runoff between surface runoff and groundwater runoff exist. The seasonal cycle of root zone soil moisture simulated by RegCM3 using IBIS and the AS74 convective closure assumption is dry, but agrees with observations during the summer. The rest of the models underestimate root zone soil moisture.  相似文献   

14.
l. IntroductiOnThe parameterizat1on of atmospheric convection is one of the most challenging issues inglobal climate modeling. Since convection interacts strongly with clouds and the large--scalecirculation, its representation in GCMs has a tremendous impact on the slmulation of theglobal climate and its variations. For example, in the National Center for Atmospheric Re-search (NCAR) Community Climate Model Version 2 (CCM2), excessive surface 1atent heatflux in the tropics was simulate…  相似文献   

15.
汪会  郭学良 《气象学报》2018,76(6):996-1013
为了加强对青藏高原深对流云垂直结构的深入认识,利用TRMM、CloudSat和Aqua多源卫星观测资料及地基垂直指向雷达(C波段调频连续波雷达和KA波段毫米波云雷达)资料,对第三次青藏高原大气科学试验期间2014年7月9日13-16时(北京时)发生在那曲气象站附近的深厚强对流云和那曲气象站以西100 km左右的深厚弱对流云的垂直结构特征进行了分析,得到的结果如下:(1)深厚强对流云和深厚弱对流云的水平尺度均较小(10-20 km),垂直发展高度较高(15-16 km,均指海拔高度);深厚强对流云在0℃层以下雷达反射率因子递增非常快,表明对流云内固态降水粒子下落至0℃层以下后融化过程有很重要的作用;在对流减弱阶段有明显的0℃层亮带出现,亮带位于5.5 km左右(距地1 km);(2)对比TRMM测雨雷达和C波段调频连续波雷达观测到的雷达反射率因子,发现TRMM测雨雷达在11 km以下存在高估;(3)深对流云主要为冰相云,云内10 km以上主要是丰富小冰粒子,而10 km以下是较少的大冰晶粒子;深厚强对流云和深厚弱对流云的微物理过程都主要包括混合相过程和冰化过程,混合相过程分为两种:一种是-25℃(深厚强对流云)或-29℃(深厚弱对流云)高度以下以凇附增长为主,另一种是该高度以上主要以冰晶聚合、凝华增长为主,该过程冰晶粒子有效半径增长较快。这些空基和地基的观测证据进一步揭示了青藏高原深对流云的垂直结构特征,为模式模拟青藏高原深对流云的检验提供了依据。   相似文献   

16.
An ensemble of six 22-year numerical experiments was conducted to quantify the response of soil moisture to multiple climate change scenarios over the American Midwest. Regional Climate Model version 3 (RegCM3) was run using two surface physics schemes: Integrated Biosphere Simulator (IBIS) and Biosphere-Atmosphere Transfer Scheme 1e (BATS1e); and two convective closure assumptions: Fritsch and Chappell and Arakawa and Schubert. Experiments were forced with a surrogate climate change scenario constructed using the National Centers for Environmental Prediction-Department of Energy Reanalysis 2 dataset and the ECHAM5 A1B climate change scenario. RegCM3-IBIS and RegCM3-BATS1e simulate increased two-meter air temperature and downward longwave radiation throughout the year under both climate change scenarios. While differences in shortwave radiation are relatively small; some model configurations and climate change scenarios produce additional precipitation, evapotranspiration, and total runoff during the spring and summer. Soil moisture is unchanged or increased throughout the growing season as enhanced rainfall offsets greater evaporative demand. Negligible drying in root zone soil moisture is found in all climate change experiments conducted, regardless of surface physics scheme, boundary conditions, or convective closure assumption.  相似文献   

17.
中尺度山脉对流群的动力和微物理数值模拟   总被引:7,自引:0,他引:7  
大山脉春夏季受太阳加热和地形抬升作用易于形成对流过程。为研究这类对流特点,在沙特阿拉伯ASIR山区组织了一个SACPEX实验计划。本文应用中国强风暴实验室MBG(MESO—Beta&Gamma)非静力模式,选取适当模拟通道模拟了该计划中1990年5月3日一次对流降水过程。模拟结果揭示了大山脉气流强迫与对流环流相互作用的一些基本特点,展示了大山脉对流过程多种复杂的宏微观特征及其生消演变。包括山坡激发对流,大对流对小对流的抑制,云自然引晶效应等,并指出在这类对流系统中CCN浓度对其降水类型的重要影响。此外,本文还进行了采取细致的雹云微物理参数化和采用简单的暖云微物理参数化的对比试验,结果表明两者模拟的动力场差别甚小,而云形态和降水发展有明显差异。上述结果总体上与该个例外场观测一致。  相似文献   

18.
Development and structure of a maritime continent thunderstorm   总被引:4,自引:0,他引:4  
Summary The evaluation of a maritime continent thunderstorm complex (Hector) occurring over Bathurst and Melville Islands north of Darwin, Australia (12° S, 131° E) is investigated primarily using Doppler radar data. Thunderstorm formation follows the development of sea breeze circulations and a period of shallow non-precipitating convection. Evidence exists for initiation of long-lived and organised convection on the sea breeze fronts, although short-lived, scattered convection is apparent earlier in the day. Merging of the convective systems is observed in regions of enhanced low-level convergence related to sea breeze circulations. The merged convective complex is initially aligned in an almost east-west direction consistent with the low-level forcing. The merged complex results in rapid vertical development with updraughts reaching 40 m s and echo tops reaching 20 km height. Maximum precipitation production occurs during this merger phase. On the perimeter of the merged convective complex, evidence exists for front-to-rear updraughts sloped over lower-level downdraughts with rear-to-front relative flow and forward propagating cold pools. The mature phase is dominated by this convection and the complex re-orientates in the prevailing easterly vertical shear to an approximate north-south direction, then moves westward off the islands with the classic multicellular squall-like structure.The one-dimensional cloud model of Ferrier and Houze (1989) used with a four class ice formulation reproduced the cloud top height, updraught structure and echo profile very well. To test the importance of ice physics upon thunderstorm development, several sensitivity tests were made removing the effects of the ice phase. All of these model clouds reached nearly 20 km, although simulations without the effects of ice had updraughts reduced from about 40 m s–1 to 30 m s–1. The simulated convection was more sensitive to changes in environmental conditions and parameterised cloud dynamics. The strong intensity of the convection was largely accounted for by increasing equivalent potential temperatures due to diurnal heating of the surface layer. The vertical velocity and radar structure of the island thunderstorm has more similarity with continental rather than oceanic convection. Maximum vertical velocities, in particular are almost an order of magnitude greater than typical of oceanic convection. With the intense updraughts, even in the low shear environment, there is evidence for mesoscale circulations within the convection.With 17 Figures  相似文献   

19.
In this study, two deep convective cloud cases were analyzed in detail to study their initiation and evolution. In both cases, all deep convective clouds were positioned at the rear of the cold front cloud bands and propagated backward. Satellite data showed that prior to initiation of the deep convective clouds, thermodynamic and moist conditions were favorable for their formation. In the morning, a deep convective cloud at the rear of cold front cloud band propagated backward, the outflow boundary of which created favorable conditions for initiation. An additional deep convective cloud cluster moved in from the west and interacted with the outflow boundary to develop a mesoscale convective system(MCS) with large, ellipse-shaped deep convective clouds that brought strong rainfall. The initiation and evolution of these clouds are shown clearly in satellite data and provide significant information for nowcasting and short-term forecasting.  相似文献   

20.
赵玉春  王叶红 《大气科学》2020,44(2):371-389
利用2009~2017年7~9月福建省逐小时地面加密自动站资料和2015~2017年7~9月厦门站的探空资料,通过K均值聚类法和中尺度数值模式(WRF3.9.1.1版本)理想数值模拟,分析了我国东南沿岸及复杂山地(福建)后汛期降水日变化特征,揭示了地形热力环流以及海陆风环流在热对流降水日变化形成中的作用,探讨了环境温湿廓线及风垂直廓线对热对流降水日峰值强度和日峰值出现时间的影响。结果发现:我国东南沿岸复杂山地(福建)后汛期降水日变化受地形热力环流和海陆风环流的影响和调制,白天辐射加热在复杂山地形成的局地热力环流激发出对流降雨带,午后受海风环流的影响,对流降雨带组织发展达到峰值,之后随着地形热力环流和海风环流减弱雨带逐渐减弱。武夷山及周边复杂山地的降水日变化主要受地形热力环流的影响,在午后对流降水达到峰值,夜间减弱几近消失。理想数值试验进一步证实了我国东南沿岸复杂山地地形热力环流对对流降雨的触发以及海陆风环流在山地对流雨带组织发展中的作用,环境温湿廓线以及风垂直廓线对热对流降水日峰值强度以及日峰值出现的时间具有重要影响,其中环境温湿廓线的大气抬升凝结高度、大气可降水量、大气的对流不稳定度以及大气中低层湿度分布的不同,会影响热对流降水日峰值强度,并通过影响山地热力对流触发时间,改变热对流降水日峰值时间,而环境风垂直廓线的低层气流强度和方向、中低层垂直风切变的不同,会影响地形热力对流系统的启动、组织发展和移动等特征,进而影响热对流降水日峰值强度以及热对流降水日峰值时间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号