首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用批式实验法在低氧条件下研究Np(Ⅴ)在北山花岗岩裂隙填充物上的吸附行为,探讨地下水pH、CO32-、腐殖酸及裂隙填充物各组分等因素对吸附的影响。实验结果表明:裂隙填充物对Np(Ⅴ)有较强的吸附能力,吸附分配比Kd为843 mL/g;Kd随pH先增大后减小,当有CO32-和腐殖酸存在时Kd减小;绿泥石和长石是北山花岗岩裂隙填充物吸附Np(Ⅴ)的主要贡献者。  相似文献   

2.
在HNO3-U(Ⅳ)-N2H4-Tc(Ⅶ)-Np(Ⅴ)体系中,Np(Ⅴ)迅速还原为Np(Ⅳ)。对比研究表明,Tc是该体系中Np(Ⅴ)迅速还原的主要原因。该体系中的主要反应是U(Ⅳ)将Tc(Ⅶ)还原为Tc(Ⅳ),进而Tc(Ⅳ)将Np(Ⅴ)还原为Np(Ⅳ)。本文通过串级和台架实验研究了该体系中锝对镎走向的影响。结果表明,Np(Ⅴ)的还原速度随HNO3浓度、初始Tc浓度的增大和温度的升高而加快。在模拟Purex流程铀钚分离工艺的条件下,试管串级和微型混合澄清槽台架实验结果表明,提高1AP料液中Tc(Ⅶ)的浓度、升高反应温度,Np进入1BU中的百分含量增加。  相似文献   

3.
本文研究了用磷酸三(2—乙基己基)酯(以下简称为TIOP)作固定相、硝酸等为流动相的萃取色层法在分离Np(Ⅳ)、Np(Ⅴ)和Np(Ⅵ)中的应用。利用Np(Ⅳ)、Np(Ⅴ)和Np(Ⅵ)在TIOP—硅胶柱上分配系数的差异使不同价态的镎得到分离。Np(Ⅴ)不被TIOP吸附,Np(Ⅳ)、Np(Ⅵ)分别用HNO_3+HF、HNO_3+HF+Fe(NH_2SO_3)_2洗脱,从而达到定量分离。文中并对光的影响进行了讨论。最后简单叙述了用TIOP—萃淋树脂来分离Np(Ⅳ)、Np(Ⅴ)和Np(Ⅵ)的实验。  相似文献   

4.
通过批吸附实验研究了固液比、pH值、离子强度和Np(Ⅴ)浓度等因素对Np(Ⅴ)在漳州伊利石上吸附作用的影响。结果表明,pH值对吸附的影响明显,而离子强度对吸附无显著影响。基于法国Puyen-Velay伊利石的2SPNE SC/CE模型并不能拟合本研究所得的滴定数据和吸附数据。依照2SPNE SC/CE模型框架,重新构建了Np(Ⅴ)在漳州伊利石上的吸附模型。与2SPNE SC/CE模型相比,本研究所得模型的位点密度小,对应的质子转移和配位反应的平衡常数也不相同。存在这种差异的原因可能是:漳州伊利石的比表面积小于Puy-en-Velay伊利石的比表面积;Puy-en-Velay伊利石较漳州伊利石具有更高比率的同晶置换(更高的Fe2O3和Mg O含量)。研究结果将有助于更准确地预测Np(Ⅴ)在不同产地伊利石上的吸附作用,为我国高放废物处置库的选址提供参考。  相似文献   

5.
不同温度下Np(Ⅳ)在北山地下水中的溶解度   总被引:1,自引:0,他引:1  
采用过饱和法研究了低氧条件下、30℃和60℃时Np(Ⅳ)在去离子水和甘肃北山地下水中的溶解度。结果表明,30℃时Np(Ⅳ)在去离子水和北山地下水中的溶解度分别为(3.4±1.0)×10-9mol/L和(1.0±0.3)×10-8mol/L;60℃时Np(Ⅳ)在去离子水和北山地下水中的溶解度分别为(1.9±0.6)×10-8mol/L和(3.7±0.5)×10-8mol/L;Np(Ⅳ)的溶解度随着温度升高而增加。同时利用SIT理论计算了实验条件下的热力学常数,确定了去离子水和北山地下水中的溶解度控制固相为Np(OH)4(am);去离子水体系中Np(Ⅳ)主要以Np(OH)4(aq)的形式存在,在北山地下水体系中Np(Ⅳ)主要以Np(OH)4(aq)和Np(CO3)2(OH)22-的形式存在。  相似文献   

6.
单甲基肼还原Np(Ⅴ)的反应动力学   总被引:1,自引:1,他引:0  
用分光光度法研究了HNO3介质中单甲基肼(MMH)还原Np(Ⅴ)的动力学行为.通过考察还原剂浓度和酸度等条件对Np(Ⅴ)动力学过程的影响,确定了反应的动力学速率方程为-dc(Np(Ⅴ))/dt=kc(Np(Ⅴ))c0.36(MMH)c(H+),在温度θ=35℃,离子强度为2 mol/L时,反应速率常数k=0.004 79(mol/L)-1.36/min.研究了离子强度、c(U(Ⅵ))和温度对反应的影响.结果表明,离子强度和c(U(Ⅵ))对反应速率无显著影响;反应活化能为60.43 kJ/mol,随着温度的升高,反应速率加快.并在此基础上推测了可能的反应机理.  相似文献   

7.
本文研究了用TBP反相分配色层法分离、测定Np(Ⅳ、Ⅴ、Ⅵ)的条件,并对纯Np硝酸体系或U-Np硝酸体系进行Np(Ⅳ、Ⅴ、Ⅵ)的测定。此法简单快速。用反相分配色层—阴离子交换法分离、测定了低浓铀高燃耗料液中Np的各种价态的比例。本文对Np(Ⅵ)在色层柱上的还原问题进行了研究,掌握了某些规律,并寻得了解决的方法。  相似文献   

8.
研究了低氧高纯氩气氛中,不同温度下Am(Ⅲ)在甘肃北山花岗岩上的吸附。研究结果表明:北山花岗岩对Am(Ⅲ)的吸附分配系数随着温度的升高而增大,说明花岗岩对Am(Ⅲ)的吸附是吸热反应;并对可能的吸附机理进行了讨论,Am(Ⅲ)在北山花岗岩上的吸附机理主要为表面配合反应,总体表现为不可逆吸附。  相似文献   

9.
氨基羟基脲反萃TBP中的Np(Ⅳ)   总被引:1,自引:0,他引:1  
为有效提高铀中除镎的分离效果,对氨基羟基脲反萃30%TBP-煤油中Np(Ⅳ)的性能进行了研究,探讨了反萃剂浓度、酸度、温度、反萃时间、相比、有机相铀浓度对Np(Ⅳ)反萃率的影响。单级研究结果表明,氨基羟基脲能有效反萃TBP中Np(Ⅳ)。使用氨基羟基脲为反萃剂的台架实验结果表明,6级反萃对1BU中Np的净化系数为20。  相似文献   

10.
本工作采用原位扩展X射线吸收精细结构(EXAFS)能谱首次揭示了Np(Ⅴ)吸附于合成纤铁矿(γ-FeOOH)表面的化学形态。Np LⅢ边EXAFS分析结果显示Np(Ⅴ)以五价镎酰离子吸附于γ-FeOOH,未发现多核络合物与表面沉淀。傅里叶转化结果在约3(1=0.1nm)附近的能峰可归于Np-Fe配位层,证明了Np(Ⅴ)-γ-FeOOH形成了内层吸附的单一形态表面络合物。所得分析结果与Np(Ⅴ)在相似构成的含铁矿物上的吸附形态结果进行了比较,进一步确认了Np-Fe、Np-O等关键配位层的存在。然而,还需要更多设计良好的EXAFS实验来确认是否存在Np-C配位层,以确认纤铁矿界面是否存在Np碳酸根表面络合物。  相似文献   

11.
采用分光光度法研究了HNO3溶液中U(Ⅳ)还原Np(Ⅴ)的反应,获得了动力学方程-dc (Np(Ⅴ))/dt=kc(Np(Ⅴ))c0.7 (U(Ⅳ))c1.9 (H+)c (NO-3),25℃时反应速率常数k=(6.37±0.49)×10-3 L3.6/(mol 3.6•min),反应活化能Ea=60.13 kJ/mol。结果表明,浓度为0~4.2×10-2mol/L的U(Ⅵ) 对U(Ⅳ)还原Np(Ⅴ)的反应几乎没有影响,并探讨了可能的反应机理。  相似文献   

12.
次锕系核素(主要为Am、Cm和Np)是放射性废物中长期放射性毒性的最大贡献体,将这些次锕系核素从废物中去除后可以将必要的储存时间由原来的大于106年减少到不到103年。近年来,二甘醇二酰胺(两个酰胺基团之间通过醚基连接)作为三齿试剂与金属离子配位得到了广泛的研究。在这类试剂中,N,N,N′,N′-四辛基-3-氧戊二酰胺(TODGA)被认为从高放废液(HLLW)中分离三价锕系和镧系具有较大的应用前景。本工作以TODGA和N,N-二己基辛酰胺(DHOA)为萃取剂,研究了以正十二烷为稀释剂,二者对Np(Ⅳ)、Np(Ⅴ)和Np(Ⅵ)的萃取行为,主要考察了萃取剂浓度、HNO3浓度和NaNO3浓度的影响。结果表明:TODGA和DHOA对Np(Ⅳ)、Np(Ⅴ)和Np(Ⅵ)的萃取分配比大小顺序均为:D(Np(Ⅳ))>D(Np(Ⅵ))>D(Np(Ⅴ)),并且均对Np(Ⅴ)的萃取能力较小;TODGA/正十二烷体系中加入DHOA时,对Np(Ⅳ,Ⅴ,Ⅵ)萃取具有一定的反协同效应;TODGA萃取Np(Ⅳ,Ⅴ,Ⅵ)的方程式分别为:Np4+(aq)+4NO-3(aq)+3TODGA(org→)Np(NO3)4.3TODGA(org)NpO+2(aq)+NO-3(aq)+TODGA(org→)NpO2(NO3).TODGA(org)NpO2+2(aq)+2NO-3(aq)+2TODGA(org→)NpO2(NO3)2.2TODGA(org)  相似文献   

13.
在后处理流程的众多化学分离中 ,Np的走向和控制是国际后处理界关注的重点研究课题。根据我国和其他国家的研究成果 ,综合分析了后处理中Np的走向和控制。Np在辐照燃料溶解液中的价态分布主要取决于溶解液中HNO3与HNO2 之比 ,通常情况下 ,溶解液中Np(Ⅴ )占主要份额 ;Np在共去污阶段的走向有两种可能 ,一是将Np控制为Np(Ⅴ ) ,使其进入高放废液 (1AW ) ,二是将Np控制为Np(Ⅵ ) ,则Np将与U ,Pu一起进入有机相 ,但两者至今为止都难以实现定量分离。Np在U/Pu分离阶段部分随U ,部分随Pu。在U纯化循环中 ,理想的方法是采用低酸加热氧化Np(Ⅳ )至Np(Ⅴ ) ,以实现与铀的有效分离。  相似文献   

14.
本文用批实验法和选择性提取法研究了有机质 ( OM)和 Ca CO3 对 Np( )在黄土上的吸附影响 ,测定了在未处理黄土和去除 Ca CO3 、去除 OM、去除 Ca CO3 和 OM三种处理黄土上 Np( )的吸附和解吸等温线 ,并用 Fre-undlich方程进行了分析。结果表明 ,Ca CO3 对 Np( )在黄土上的吸附 /解吸滞后有一定影响 ,对 Np( )的吸附有负贡献 ;OM对 Np( )在黄土上的吸附 /解吸滞后没有影响 ,且对 Np( )的吸附影响很小 ;溶液中的腐殖酸 FA或CO3 2 -对 Np( )的吸附有明显的正作用 ;Np( )在黄土上的吸附主要受粘土矿物成分的影响 ;Np( )在黄土中的迁移滞后现象应予以考虑。  相似文献   

15.
本文研究了N_2H_5NO_3-Fe(Ⅲ)-HNO_3体系和模拟强放废液中Np(Ⅴ)的电解还原,讨论了酸度、温度、肼和铁浓度对Np(Ⅴ)电解还原速度常数和还原率的影响。Np(Ⅴ)的电解还原对Np(Ⅴ)的浓度呈一级反应。在1.5mol/l HNO_3,0.2mol/l肼和2g/l Fe(Ⅲ)存在下,29mA/cm~2电流密度,温度为30℃时,电解还原反应速度常数K为3.42×10~(-2)min~(-1),反应的活化能为38kJ/mol。提高酸度可以加快还原反应的速度和还原率。模拟强放废液中Np(Ⅴ)的电解还原进行得更快,比同酸度的N_2H_5NO_3-Fe(Ⅲ)-HNO_3体系的K值提高7-10倍。当料液酸度为1.5mol/l HNO_3,在0.2mol/l肼存在下,以29mA/cm~2电流密度,电解还原半小时,几乎100%Np(Ⅴ)被还原成Np(Ⅳ)。  相似文献   

16.
Np(Ⅳ)的溶解行为研究   总被引:3,自引:2,他引:1  
在低氧条件下以Na2S2O4或铁粉作还原剂,测定了Np(Ⅳ)在模拟地下水和重蒸水中的溶解度,讨论了溶液pH值和放置时间对Np(Ⅳ)的形态及在两种水样中溶解度的影响。实验结果表明:放置时间对溶解度的影响不大;随着溶液pH值(6-12)的变化,Np(Ⅳ)在模拟地下水和重蒸水中的溶解度不变,Np(Ⅳ)主要以Np(OH)4,Np(OH)5^-两种形态存在。  相似文献   

17.
通过分光光度法和液闪计数法研究了Np(Ⅴ)与U(Ⅵ)间的阳阳离子络合作用对Np(Ⅴ)在30%TBP-煤油有机相中的萃取分配行为的影响。结果表明:Np(Ⅴ)-U(Ⅵ)阳阳离子络合物可被萃入TBP有机相中,其萃取分配系数较Np(Ⅴ)提高了数倍。随着U浓度在0.12~0.60 mol/L范围内升高,Np(Ⅴ)-U(Ⅵ)阳阳离子络合物萃取分配系数不断增加,当U浓度达到0.72 mol/L时,由于有机相铀饱和度原因,Np(Ⅴ)-U(Ⅵ)阳阳离子络合物萃取分配系数下降。在室温下,水相酸度为3 mol/L、铀浓度为0.60 mol/L、相比(o/a)为2∶1、两相接触时间为1 min时,Np(Ⅴ)的总萃取分配系数约为0.1,萃入有机相中的Np约占Np总量的9%。提高酸度有利于Np(Ⅴ)-U(Ⅵ)阳阳离子络合物的萃取,接触时间在1~8min范围内对萃取无影响。  相似文献   

18.
237Np半衰期较长,具有较高的生物毒性,使其成为高放废液非α化过程中重点关注的核素之一。本工作采用新型的N,N′-二甲基-N,N′-二辛基-3-氧杂-戊二酰胺(DMDODGA)为萃取剂,研究了萃取剂浓度、水相初始硝酸浓度和温度等因素对DMDODGA萃取Np(Ⅳ)、Np(Ⅴ)、Np(Ⅵ)的影响。结果表明:随着DMDODGA浓度和水相初始硝酸浓度的增加,Np(Ⅳ)、Np(Ⅴ)、Np(Ⅵ)的分配比均增大。萃取剂浓度小于0.005 mol/L时,DMDODGA与Np(Ⅳ)生成1∶2型萃合物;萃取剂浓度大于0.005 mol/L时,DMDODGA与Np(Ⅳ)生成1∶3型萃合物。萃取剂浓度在0.1~1.0 mol/L范围内,DMDODGA与Np(Ⅴ)、Np(Ⅵ)均生成1∶2型萃合物。DMDODGA萃取Np(Ⅳ)、Np(Ⅴ)、Np(Ⅵ)的ΔH分别为-59.55、-22.02、-31.40 kJ/mol,3个反应均为放热反应,降低温度有利于反应的正向进行。  相似文献   

19.
本研究项目按照计划节点要求完成了以下主要研究内容:1)对Np、Tc具有较强阻滞能力地质材料的筛选研究;2)Np、Tc在混合回填材料中的扩散系数的测定;3)部分围岩岩心的水力传导率、渗透系数、空隙率等特征参数的测定;4)Tc在甘肃北山地区预选场场址围岩中吸附机制和扩散机制的研究;5)大气条件下Np在甘肃北山地区预选场场址围岩中的吸附机制和扩散机制的研究等。  相似文献   

20.
应用溶剂萃取法研究了N,N-二甲基-3-氧杂-戊酰胺酸(DOGA)与Np(Ⅳ),Pu(Ⅳ)的配位行为。研究结果表明,DOGA与Np(Ⅳ),Pu(Ⅳ)在25℃可以形成比较稳定的配合物,配合物的逐级累积稳定常数分别为:Pu(DOGA)3^ :1gβ1=6.52,1gβ2=9.14,1gβ3=15.77;Np(DOGA)3^ :1gβ1=6.95,1gβ2=10.435,1gβ3=14.93。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号