首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
采用失重法和电化学扫描法研究了等离子表面合金化技术在Ti6A14V(TC4)合金表面形成的Ti—Nb合金层及基体材料的腐蚀行为,分析了Nb的渗入对Ti6A14V耐蚀性的影响.失重法研究表明:在10%H2SO4和10%HCl溶液中Ti—Nb合金层较基体耐蚀性提高,在10%NaCl溶液中无明显变化;电化学腐蚀研究表明,在5%H2SO4、5%HCl、3.5%NaCl溶液中,Ti—Nb合金层耐蚀性较基体均有不同程度的提高.  相似文献   

2.
Ti6Al4V合金表面离子铌合金化及其耐磨性能研究   总被引:1,自引:1,他引:0  
采用双辉离子渗技术对Ti6Al4V钛合金表面渗Nb,利用扫描电子显微镜、X射线衍射仪、显微硬度计、磨损试验机、电化学测试系统研究钛合金表面离子渗Nb合金化层的形态、结构、力学性能、摩擦学性能和电化学腐蚀性能,并探讨渗Nb改性处理对钛合金在3.5%NaCl溶液中腐蚀磨损行为的影响.结果表明,渗Nb工艺参数对合金化层的形态、结构和性能影响显著,高浓度渗Nb合金化改性层表现出良好的强化效果,显著地改善了Ti6Al4V合金的抗大气环境和抗NaCl溶液腐蚀磨损性能.Ti6Al4V合金基材和渗Nb层的耐磨性能在NaCl溶液中优于大气环境,其原因归于溶液的润滑作用和试样的良好耐腐蚀性能.  相似文献   

3.
利用电化学测试、扫描电镜观察及能谱分析等方法,研究了AlCoCrFeNiCu高熵合金在不同介质中的电化学腐蚀行为.结果表明,在3.5%NaCl和30%H2O2溶液中,1Cr18Ni9Ti不锈钢与AlCoCrFeNiCu高熵合金相比,具有较正的自腐蚀电位,较小的腐蚀电流密度,AlCoCrFeNiCu高熵合金的腐蚀以点蚀和局部腐蚀为主;在1mol/L H2SO4溶液中,AlCoCrFeNiCu高熵合金的腐蚀电流密度较1Cr18Ni9Ti不锈钢小,耐腐蚀性能更好.  相似文献   

4.
利用动电位极化曲线和电化学阻抗谱方法研究了放电等离子烧结技术(SPS)制备的生物医用Ti-24Nb-4Zr-8Sn(Ti2448)合金在Hank's模拟人体体液中的电化学腐蚀行为及腐蚀机理,并与工业纯钛(TA1)和Ti-6Al-4V(TC4)合金进行了比较。结果表明:与TA1和TC4合金相比,在37℃的Hank's溶液中SPS烧结Ti2448合金具有最小的腐蚀电位与致钝电流密度、接近的腐蚀电流密度以及最大的极化电阻,3种材料耐腐蚀性能好坏依次为Ti2448TC4TA1。  相似文献   

5.
通过激光选区熔化技术制备沉积态的Ti6Al4V合金,并在800℃下进行热处理,优化组织结构,探索两种状态下Ti6Al4V合金在3.5%(质量分数) NaCl溶液中的电化学腐蚀行为。结果表明,沉积态的Ti6Al4V合金相组织主要由细针状α'马氏体相以及初生β相组成;而经热处理后,转变为板条状的α相+剩余β相,组织更为均匀、单一。电化学测试结果表明,两种状态的Ti6Al4V合金在3.5%NaCl溶液中均发生自发钝化。热处理对合金表面阴极过程没有明显影响,但通过降低阳极反应速率使开路电位及自腐蚀电位升高,自腐蚀电流密度下降至沉积态的1/5。两种状态下Ti6Al4V合金表面均可形成致密钝化膜,且热处理后表面形成的钝化膜更致密、更厚。热处理后合金表面极化电阻值约是沉积态的3.8倍,表明钝化膜保护性更为优异。这一结果表明,热处理可显著优化合金组织结构,提高激光熔化技术制备的Ti6Al4V合金耐蚀性。在较为苛刻的服役环境中,建议采用热处理态的合金作为结构件。  相似文献   

6.
利用X射线衍射和金相显微镜等手段,研究了不同Ti含量的ZA35合金组织,采用动电位扫描方法测定合金的极化曲线,探讨了Ti对ZA35合金的电化学腐蚀行为的影响规律。结果表明,在3.5%的NaCl溶液中,与ZA35合金相比,添加0.1%的Ti的ZA35合金的腐蚀电流密度减小了56.2%。添加0.1%的Ti可使ZA35合金晶粒和枝晶细化,在NaCl溶液中电化学腐蚀时,腐蚀产物阻塞了细小晶界,提高了合金耐电化学腐蚀性能。  相似文献   

7.
模拟体液中纯钛及Ti6A14V合金的腐蚀行为   总被引:2,自引:0,他引:2  
采用电化学测试技术研究了人体医用金属材料工业纯钛和Ti6A14V合金在人工模拟体液中的腐蚀行为,结果表明,阳极极化后两种合金均未发现点蚀,工业纯钛的维钝电流密度小于于Ti6A14V合金,前者的阳极极化性能优于后者,Ti6A14V合金缝隙试样在阳极电位超过+2000mV(vsSCE)后,电流开始急剧增大,发生了缝隙腐蚀;通过电子探针分析发现,在缝隙内Al和V两种元素发生活性溶解。工业纯钛在电位达到+4000mV/(vsSCE)时仍没有发生缝隙腐蚀。  相似文献   

8.
Zr基和Ti基块体非晶合金的电化学腐蚀性能(英文)   总被引:1,自引:0,他引:1  
用电化学方法研究Ti基和Zr基非晶合金及与非晶成分相同的Zr基晶态合金在1mol/LH2SO4和3.5%NaCl溶液中的腐蚀行为。极化曲线测试结果表明:在H2SO4溶液中,Zr基非晶和晶态合金自腐蚀电位比Ti基非晶合金的低;在NaCl溶液中,Zr基晶态合金的自腐蚀电位最低,而且在腐蚀过程中没有发生钝化,然而非晶合金都表现出钝化特性。交流阻抗测试结果表明:在NaCl溶液中非晶合金比晶态合金表现出更好的耐腐蚀性能,但是在H2SO4溶液中并没看到它们之间有明显的区别。表面形貌分析表明:在NaCl溶液中,这2种非晶合金都发生点蚀,而在H2SO4溶液中所有试验合金都表现出类似的特征,试样表面基本保持平整,只是在腐蚀表面的局部区域有一些裂纹出现。  相似文献   

9.
用双层辉光等离子法在钛表面制备的Ti-Pd合金层性能研究   总被引:2,自引:0,他引:2  
采用双层辉光等离子冶金技术在纯钛表面制备了Ti—Pd合金层。其深度大约为90μm,Pd含量呈梯度变化,并出现了TiPd3,TiPd2,Ti2Pd3,Ti3Pd5,TiPd,Ti4Pd等6种化合物相和Pd相。合金层在100℃的NaCl饱和溶液+HCl溶液以及40℃的8.6%H2SO4溶液中的耐缝隙腐蚀性能优于Ti0.2Pd合金;在室温80%H2SO4的溶液中,腐蚀速率仅为0.682mm/a,是Ti0.2Pd合金的18.2%:在室温30%HCl的溶液中,表面Ti—Pd的腐蚀速率仅为0.004mm/a,是Ti0.2Pd合金的12.5%。  相似文献   

10.
热处理对AZ91D和AM50合金组织和腐蚀行为的影响   总被引:15,自引:1,他引:14  
研究了固溶处理(T4)和固溶 人工时效处理(T6)对AZ91D和AM50合金组织结构、成分分布以及在3.5wt% NaCl溶液中腐蚀行为的影响。结果表明热处理可以改变两种合金的组织结构和成分分布,进而对合金的自腐蚀电位和抗腐蚀性能产生影响,β相的体积分数和分布状态对合金的腐蚀行为具有重要的影响。  相似文献   

11.
The influence of potential on electrochemical behaviour of pure Ti, Ti‐6Al‐7Nb, and Ti‐6Al‐4V ELI alloy under saline conditions were investigated by electrochemical impedance spectroscopy (EIS). All measurements were carried out in saline solution (0.9% NaCl) at different impressed potentials (corrosion potential (Ecorr), 0 mV (SCE) and + 500 mV (SCE)) for 1 h. The experimental results were compared with those obtained by potentiodynamic polarization curves. The corrosion current densities obtained for the titanium alloys showed lower values than for pure Ti, indicating the formation of a stable passive film with time. Electrochemical impedance spectroscopic studies indicated that the resistance of the passive film increased with the impressed potential. The impedance spectra were fitted using a non‐linear least square (NLLS) fitting procedure. The magnitude of the corrosion resistance of titanium alloys under saline solution was compared and results are presented.  相似文献   

12.
In order to study the electrochemical behaviors of TiN film coated Ti−Nb alloys for dental materials, Ti containing Nb up to 3, 20, and 40 wt.% was melted by a vacuum furnace and coated with TiN by EB-PVD. the electrochemical behaviors were investigated using a potentiostat in 0.9% NaCl solution and the corrosion surface was observed using SEM and XPS. Ti−3Nb and Ti−20Nb alloys have α+β phase structure. In the case of Ti−40Nb, the microstructure had a coarse β phase. The microstructural changed from equiaxed to acicular and an increase of β-phase in Ti−Nb alloys was observed with increased Nb content. The current density at 300 mV (potential of oral environment) of Ti−40Nb alloy was lower than that of the other alloys in 0.9% NaCl. The pitting corrosion resistance of Ti−40Nb was higher than that of Ti−3Nb and Ti−20Nb alloys in the 0.9% NaCl solution. The corrosion potential and pitting potential of TiN coated Ti alloy increased with increasing Nb content but the current density at 300 mV and the current density at the passive region decreased. The TiN coated Ti−40Nb alloy offers good corrosion resistance for dental implants compared with non-TiN coats alloys.  相似文献   

13.
The aim of this study is to investigate the corrosion behaviour of three ZrTi alloys (denoted with Zr5Ti, Zr25Ti, and Zr45Ti) in 0.9% NaCl solution. For comparison, cp‐Ti was also investigated. In order to study the localized corrosion resistance and corrosion behavior at open circuit potential versus time, the open circuit potential (EOC) was recorded, and the cyclic potentiodynamic polarization (CPP) and electrochemical impedance spectroscopy (EIS) were performed. Scanning electron microscopy (SEM) observations were made following the CPP tests. The Zr5Ti alloy was the most susceptible to localized corrosion. The Zr25Ti alloy presents a dangerous breakdown potential but have a sufficiently negative zero corrosion potential that the difference between them is sufficiently to provide a higher localized corrosion resistance in comparison with Zr5Ti. Among ZrTi alloys subjected to investigation, the Zr45Ti alloy had a much larger passive range in the polarization curve and was the most resistant to localized corrosion. For used test conditions, the localized corrosion was not found for the cp‐Ti. The EIS tests show that both investigated ZrTi alloys and cp‐Ti exhibit passivity after 168 h immersion in 0.9% NaCl solution, at open circuit potential.  相似文献   

14.
运用电化学方法对工业纯Ti,Ti6Al4V合金和TAMZ合金在人工唾液中的电化学行为进行了研究,探讨了溶液pH值对Ti合金电化学性能的影响。结果表明,在人工唾液中,TAMZ合金具有最佳电化学稳定性,腐蚀速率最低。Ti合金在人工唾液中存在较大的钝化区间,电化学稳定性按工业纯Ti,Ti6Al4V合金和TAMZ合金的顺序依次增强。随溶液pH值升高,试样的热力学稳定性增强。交流阻抗结果显示,3种实验材料在人工唾液中具有优异的耐蚀性能,腐蚀速率均在10^-2μm/a数量级,小于医用级标准0.25μm/a。  相似文献   

15.
Titanium is the best metal for making dental implants and restorations. In the last decade, new titanium alloys have been developed in different areas of dentistry. Concurrently, treatments using fluoride supplementation, such as odontology fluoride containing gels, have also been widely used in odontology. The aim of this study is to investigate the electrochemical behaviour of a new titanium alloy containing Cu and Ag, in fluoride‐containing media, and compare it with the behavior of Ti and Ti6Al4V, which are used frequently as biomaterials. Open circuit potential, polarization resistance and electrochemical impedance spectroscopy measurements revealed that the corrosion resistance of titanium and its alloys is controlled by the fluoride ion concentration and the pH of the solution. The presence of F? ions in neutral solution does not hinder the formation of a protective layer of Ti and its alloys. Thus, the corrosion resistance of Ti is maintained in this medium. However, the corrosion of Ti and its alloys are enhanced in an acidic environment, because F? ions in the solution combines with H+ ion to form HF, even in low fluoride concentration.  相似文献   

16.
The frictional heat generated during the operation of the joint prosthesis in vivo could change the corrosion resistance of the prosthesis material. In this paper, the corrosion behavior of three medical alloys at different synovial fluid temperatures was analyzed using electrochemical measurement technology. Furthermore, the scanning electron microscope and energy-dispersive spectrometer were used to characterize the surface morphology and composition of the alloys after long-term immersion. The results show that increasing temperature causes the open-circuit potential of titanium alloy to shift negatively and the corrosion tendency to increase. The increasing temperature leads to the decrease of activation energy of titanium alloy, which in turn results in the increase of corrosion current density and accelerated corrosion. The results of Nyquist curves confirmed that the radius of the capacitive arc decreased with the increase of temperature, indicating the deterioration of corrosion resistance. The CoCrMo alloy shows the same regularity as the titanium alloy in 0.9% NaCl, though no obvious regularity in 25% newborn bovine serum; this may be related to the complexity of the corrosion system.  相似文献   

17.
The aims of this study were to investigate the effects of Zr addition and potentiodynamic polarization on the microstructure and corrosion resistance of Ti–22Nb and Ti–22Nb–6Zr alloy samples. The corrosion tests were carried out in 0.9% NaCl at 37 °C and neutral pH value, utilizing the OCP, potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS) techniques. The results of XRD and optical microscopy indicated that the addition of Zr stabilized the β phase, which plays a crucial role in the corrosion resistance improvement of the Ti–22Nb–6Zr alloy. From the polarization curves, it can be seen that the alloys exhibited a wide passive region without the breakdown of the passive films and also low corrosion current densities. In addition, the values of the corrosion current densities and passive current densities decreased with the addition of 6 at% Zr into the Ti–22Nb alloy. The EIS results of these two alloy samples after 1‐h immersion in 0.9% NaCl solution, and being fitted by RS(QPRP) model, suggested that the corrosion resistance of the passive films improved with the addition of Zr and only a single passive film formed on the surfaces. However, two time constants were observed for the Ti–22Nb and Ti–22Nb–6Zr alloy samples after potentiodynamic polarization, the spectra of which can be fitted using the Rs(Qo(Ro(QbRb))) model. In addition, the corrosion resistance of the two alloy samples was reinforced significantly because of polarization when compared to the immersed samples. All these observations suggested a nobler electrochemical behavior of the titanium alloys with the addition of Zr element and after polarization.  相似文献   

18.
Ti6Al4V–5Cu alloys have potential biomedical applications due to their adequate antibacterial properties. However, the wear and corrosion properties of these alloys are also crucial for dental implants. In the present study, Ti6Al4V–5Cu alloys were fabricated by selective laser melting (SLM). The microstructure and composition of Ti6Al4V–5Cu alloys by SLM were evaluated. The wear properties of the alloys in the simulated saliva environment and the atmospheric environment, as well as the electrochemical properties in the simulated saliva environment, were systematically investigated. The results showed that the crystal structure of Ti6Al4V–5Cu alloys was mainly composed of α-Ti and Ti2Cu. In the SLM process, no preferred texture was observed due to the complex direction of the heat flux. The formation of Ti2Cu can improve the strength of the material and make the titanium copper alloy have higher microhardness. Ti6Al4V–5Cu alloy showed a satisfactory wear resistance in both wear media. The addition of Cu reduced the second-phase content of the alloy. Meanwhile, the number of microcells was reduced, which was a positive factor to improve the corrosion resistance of the alloys.  相似文献   

19.
The present paper investigates two different titanium alloys: Ti6Al7Nb – a well‐established implant biomaterial and Ti6Al4Zr – a relatively new titanium alloy. Roughness is evaluated with atomic force microscopy (AFM) and the hydrophilic/hydrophobic balance by contact angle measurements. Furthermore, an extensive characterization was done in order to evaluate and compare the electrochemical behaviour for both titanium alloys in artificial Fusayama and Afnor saliva, at different immersion times, and consisted of Tafel plots, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Also, metals ions release was measured using inductively coupled plasma mass spectrometry (ICP‐MS). In both studied artificial saliva, Ti6Al4Zr alloy presents a better electrochemical behaviour according to corrosion rates from both electrochemical techniques and ICP‐MS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号