首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
天然植物纤维增强热塑性塑料   总被引:10,自引:0,他引:10  
介绍了天然植物纤维增强热塑性塑料复合材料的研究状况,对复合材料在共混中存在的问题及提高两者之间相容性的方法做了评述。  相似文献   

2.
改进植物纤维/热塑性塑料复合材料界面相容性的技术进展   总被引:17,自引:0,他引:17  
综述了国内外在改进天然植物纤维增强热塑性塑料复合材料界面相容性方面所做的研究工作及最新进展,分析了复合材料界面相容性的影响因素。目前改进界面相容性的方法主要包括:天然植物纤维的表面处理,如碱化和酯化预处理、接枝改性、浸润处理、表面物理加工;添加合适的界面改性剂(如界面相容剂、化学偶联剂、表面活性剂等);以及塑料基体改性等;其他因素对复合材料相容性也有影响。  相似文献   

3.
综述了静电纺纳米纤维蛋白质吸附材料的研究进展,简要介绍了蛋白质吸附原理和蛋白质吸附性能的影响因素,具体分析了无机、有机及有机/无机相结合等不同组分静电纺纳米纤维的蛋白质吸附性能。蛋白质吸附的影响因素包括蛋白质的物理化学性质、吸附载体表面性质及环境因素。静电纺无机纳米纤维蛋白质吸附材料具有比表面积大、孔隙率高等特性,在蛋白质吸附应用中发挥着重要作用;静电纺有机纳米纤维蛋白质吸附材料通过疏水基团或疏水改性,表现出优异的吸附性能;静电纺有机/无机复合纳米纤维蛋白质吸附材料结合有机纤维疏水特性与无机纤维高孔隙结构,可显著提高蛋白质吸附效果。建议加强对多组分复合纤维蛋白质吸附材料的开发,进一步提升静电纺纳米纤维蛋白质吸附材料的吸附性能,并拓展静电纺丝纳米纤维在生物领域的应用。  相似文献   

4.
热塑性塑料/天然植物纤维复合材料的研究   总被引:16,自引:0,他引:16  
介绍了热塑性塑料/天然植物纤维复合材料的研究状况,对复合材料在共混中存在的问题及提高两者之间相容性的方法做了评述  相似文献   

5.
ADDP改性纳米碳酸钙工艺研究   总被引:1,自引:0,他引:1  
介绍了表面活性剂ADDP的合成及其对纳米碳酸钙的表面改性方法。研究了温度,溶液pH,ADDP溶液浓度等因素对ADDP改性纳米碳酸钙的影响,把改性纳米碳酸钙应用于软聚氯乙烯塑料中,显著改善了聚氯乙烯碳酸钙体系的加工性能,塑料白度,力学性能也得到提高。  相似文献   

6.
改善热塑性塑料/植物纤维界面相容性方法的研究   总被引:2,自引:1,他引:1  
简要介绍热塑性塑料/植物纤维复合材料的界面相容性及其影响因素,着重介绍国内外改善热塑性塑料/植物纤维界面相容性的各种物理、化学方法,主要包括植物纤维的表面处理、热塑性塑料的改性及加入第三组分,展望了热塑性塑料/植物纤维复合材料的发展前景。  相似文献   

7.
大豆蛋白质作为生物降解天然高分子材料的代表,加入一定量的增塑剂之后具有良好的加工性能、力学性能和生物降解性。另外,吸水性对其性能的发挥又有很大影响。本实验采用多种增塑剂对大豆蛋白质进行增塑,观察了增塑剂对大豆蛋白质塑料吸水率的影响,并对其吸水率进行了对比。  相似文献   

8.
综述了用于树脂基复合材料增强的两种微细化植物纤维——微纤化植物纤维和纳米晶体纤维的原料特性和主要的表面修饰方法,针对微细化植物纤维复合过程中存在的分散性差、增强效果不及预期等问题,提出了从原料制备和成型工艺及参数等的选择上提高微细化植物纤维复合材料使用性能、性能等级的方法,展望了微细化植物纤维在树脂基纤维复合材料增强上的美好应用前景与应用趋势。  相似文献   

9.
简要介绍了静电纺丝制备纳米纤维的原理以及纤维形态的主要影响因素;从静电纺丝纳米纤维的过滤效果、抗菌性能和力学性能等方面综述了其应用于生物气溶胀过滤材料的研究进展;指出静电纺丝纳米纤维大规模生产已取得突破,且抗菌改性效果持久,适合应用于生物气溶胀过滤领域,今后应进一步提高纳米纤维的力学性能及质量稳定性,具有良好的应用前景。  相似文献   

10.
随着人们环保意识的增强,环保型聚氯乙烯(PVC)塑料添加剂正在不断推进,利用天然矿物蛭石代替非环保PVC塑料添加剂成为行业新趋势。采用液相高速剪切/分级离心法制备了纳米蛭石片悬浮液,通过溶剂置换法制备了纳米蛭石片/PVC复合塑料,研究了纳米蛭石片含量对其紫外、导热性能,阻燃性能、热稳定性和拉伸性能的影响。结果表明:纳米蛭石片尺寸在150 nm~1.1μm,保持了蛭石原有结构特征。纳米蛭石片添加量为15%(质量分数)时,纳米蛭石片/PVC复合塑料的拉伸强度提高了50.8%,极限氧指数提高了7.3%,导热系数降低了17.8%,老化热稳定时间提高了140 min,脱氢热解时间提高了24 min,具有优异的热稳定性能和抗紫外性能。在PVC制品中加入蛭石将会提高复合塑料的各项性能,对于高性能PVC制品制备具有重要的实际意义。  相似文献   

11.
为了提高植物蛋白基绿色高分子材料的力学性能和热稳定性能,以棉籽蛋白(CP)为原料,在尿素变性、甘油增塑、双醛淀粉(DAS)交联的基础上,将其与取向排列的天然剑麻长纤维(SF)复合,经热压硫化加工制备得到具有优异性能的棉籽蛋白/剑麻纤维全绿色复合材料。微观结构形貌和性能分析测试表明,复合材料获得改善性能主要归功于:CP基体与SF增强相间形成的紧密界面结合、对剑麻长纤维的预浸渍处理、CP与SF生物大分子间的强氢键作用。考察了不同DAS含量对复合材料力学性能和热稳定性能的影响。拉伸、热重和差示量热分析表明,经20%(质量) DAS交联的复合材料具有最优的拉伸强度(断裂应力7.5 MPa)、模量(杨氏模量93 MPa)、热稳定性(最大分解温度328℃)和玻璃化转变温度(102℃)。  相似文献   

12.
The works on synthesis and main properties of fibrous ion exchangers are reviewed in the paper. The main attention is paid to the FIBAN materials found practical applications in water treatment and air purification processes. The following methods for preparation of ion exchange fibers have been considered: mechanical mixing of inert fiber‐forming polymer solutions or melts with finely dispersed ion‐exchangers with their following spinning into fibers; preparation of composite fibers containing polymeric reinforcement in the polyelectrolyte body; spinning of specially prepared polymers containing ionizable groups and having fiber‐forming properties; grafting of ionogenic polymers (or polymers in which ionogenic groups can be introduced after grafting) onto polymer chains of the existing polymer fiber; polymer analogues conversion of existing polymeric fibers by introducing in their structure ionizable functional groups. Conditions for preparation of ion exchange fibers with high exchange capacity, optimal swelling and acceptable mechanical properties have been outlined.  相似文献   

13.
Due to increased awareness on the part of end users and pressure from legislators, the composite industry has begun investigating the possibility of increasing the proportion of recycled or biodegradable composite materials. Accordingly, efforts are being deployed to find alternative reinforcement and resin systems that are environmentally friendly while providing the same performance as their synthetic counterparts. Natural fibers offer the potential to act as a reinforcing material for low to medium strength applications. In this study a natural fiber extracted from the date palm tree was used as reinforcement for polymeric matrix composites. Polyester composite specimens reinforced with date palm fibers (DPF) were subjected to various types of mechanical and physical tests in order to assess their performance. Results show that these fibers may yield reasonable properties and could be used for low‐cost applications that require low to medium strength. Tests indicate, however, that additional work is needed to enhance the compatibility between the fiber and the matrix. POLYM. COMPOS., 26:604–613, 2005. © 2005 Society of Plastics Engineers  相似文献   

14.
综述国内外专利报道的人造毛发用合成纤维的种类及性能,着重介绍了PVC基、PAN基、PET基和蛋白质基纤维作为假发原料使用时的优缺点,并针对其缺点提出改进方法,对人造毛发用合成纤维的发展予以展望。  相似文献   

15.
Natural cellulosic fibers, including hemp, are increasingly being used for composite reinforcement. However, their poor adhesion with synthetic resins limits their use as reinforcing agent. It is generally accepted that interfacial adhesion can be best described in terms of dispersion forces and acid–base interactions. Therefore, there is a need for quantitative determination of acid–base character of natural cellulosic fibers. In this study, acid–base characteristics and dispersion component of surface energy of hemp fibers have been determined using inverse gas chromatography. Effect of alkalization and acetylation on acid–base characteristics has also been examined. The results indicate that alkalization and acetylation make the hemp fiber amphoteric, thereby improving their potential to interact with both acidic and basic resins. Finally, a parallel is drawn between the changes in fiber‐matrix acid–base interactions and the actual improvement in the mechanical properties of the composites manufactured using resin transfer molding process. POLYM. ENG. SCI. 46:269–273, 2006. © 2006 Society of Plastics Engineers  相似文献   

16.
The current trend towards sustainability has promoted a new interest in biodegradable plastics. Although there have been many studies on the behavior of biodegradable plastics, the changes in properties that may occur during use have not been fully documented. The mechanical properties of seven commercial service-ware items produced with biodegradable plastics were analyzed in this investigation. The effects of UV exposure, humidity, and accelerated aging on the mechanical properties were studied. In general, samples from polylactic acid and wheat straw had properties comparable to traditional synthetic plastics used in this application. However, the strength of other polymers such as bagasse, fiber pulp and potato starch was less than that of comparable synthetic plastics. The mechanical properties of the biopolymers generally deteriorated significantly upon exposure to UV radiation and humidity, with polylactic acid, wheatstraw, potato starch, and the bamboo bulrush wheatstraw blend being affected the most. Accelerated aging data indicate that after 6 months under ambient conditions, the potato starch, wheatstraw, and bamboo bulrush wheatstraw blend have a significant reduction in strength and modulus. In general, the thermal analysis behavior of most of the plastics was similar indicating a major weight loss of about 69–97% over a temperature range of 250–400?C. Additional improvements may be necessary to increase the environmental resistance of these biopolymers so that they can be effective replacements for traditional plastics.  相似文献   

17.
This paper provides a review on the surface modification of low-surface energy fibers (polypropylene, polyethylene, and nylon) and discusses on the effects of these treatments toward the physical/mechanical properties of cement-based composite materials. These properties include the tensile, flexural, compressive strength and toughness, stress–strain behavior, modulus of elasticity, and workability. The effects of these treatments on the changes in the fiber/cement matrix interfacial properties are also presented. Studies have shown that various surface treatments have been used to improve the efficiency of the low-surface energy synthetic fibers in the cementitious composites. The modifications are on the basis of physical, chemical, and mechanical methods. The main achievements found have been the development of fibers with modified surface to optimize fiber–matrix adhesion. Moreover, the recently developed surface modifications will allow obtaining high-performance cementitious materials reinforced with the synthetic fibers.  相似文献   

18.
Natural cellulosic pine needles were used in long fiber form as a new, potential reinforcement to fabricate green composites using the compression-molding technique. Mechanical and physico-chemical properties of green composites have been investigated as a function of fiber loading in order to assess their applicability in everyday life. The green composites fabricated showed a universal trend of increase in properties with fiber loading up to 30% and beyond this loading these properties decrease. Fiber/matrix interaction between the polymer and reinforcement has been analyzed from the mechanical and morphological studies, which reveal the impact of good interfacial compatibility.  相似文献   

19.
Polymer-based composite structures have advantages over many other materials. The most important advantage is the higher mechanical properties obtained from the composites when supported by fiber reinforcement. The mechanical and thermal properties of fiber-reinforced composite structures are affected by the amount of fibers in the structures, orientation of the fibers and fiber length. Silk and cotton fibers are used in many fields but especially in clothing and textiles. However, there is not enough research on their usage as reinforcement fibers in composite structures. Silk fibers as a textile material have better physical and mechanical properties than other animal fibers. The improvement of the mechanical and physical properties of the composite structures allows them to be used in many areas. From economical, technological and environmental points of view, the improvement of mechanical and physical properties of polymeric materials are receiving much attention in recent studies.

In this study, different application areas were chosen to evaluate the waste silk and waste cotton rather than classic textile applications. Waste silk and cotton and recycled polycarbonate polymer were mixed and as a result composite structures were obtained. Silk and cotton waste fiber dimensions were in between 1 mm, 2.5 mm and 5 mm. The recycled PC/silk and cotton wastes were mixed in the rates of 97%/3%. Mixtures were prepared by twin-screw extruder. Tensile strength, % elongation, yield strength, elasticity modulus, Izod impact strength, melt flow index (MFI), heat deflection temperature (HDT) and Vicat softening temperature properties were determined. To determine the materials' thermal transition and microstructure properties, differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) were used.  相似文献   

20.
钢纤维/聚合物复合材料性能研究   总被引:4,自引:0,他引:4  
以HDPE和ABS为基体树脂,钢纤飨为填充材料制备了钢纤维/聚合物复合材料,研究了钢纤维含量和长径比对复合材料导电性能,力学性能和导热性能的影响,考察了重复加工次数与纤维长径比和复合材料性能的关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号