首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
以甘油为增塑剂,采用熔融共混法制备热塑性木薯淀粉/剑麻纤维(TPS/SF)复合材料,研究碱处理和3-氨丙基三乙氧基硅烷(KH550)两种不同表面处理方法处理剑麻纤维对TPS结构与性能的影响。结果表明,添加碱处理剑麻的TPS/SF复合材料塑化性能较好,更容易进行加工;在力学性能、回生行为、热性能和结构方面,添加KH550处理的剑麻纤维TPS/SF复合材料拉伸强度和弹性模量较高,能更好抑制TPS回生,且热稳定性能更好,结构更稳定、更疏水。  相似文献   

2.
聚丙烯/碱处理剑麻纤维复合材料的结构与性能   总被引:4,自引:0,他引:4  
用注射成型的方法制备了聚丙烯(PP)/碱处理剑麻纤维(SF)复合材料,研究了材料的热性能、晶态结构、微观结构和力学性能。结果表明,碱处理SF对复合材料的热稳定性影响较小,但提高了PP相的结晶速率和结晶度,诱导了卢晶型PP的生成,提高了复合材料的弹性模量,对PP有显著的增韧效果;但弱的界面键合降低了复合材料的拉伸强度。  相似文献   

3.
为改善剑麻纤维(SF)与聚丙烯(PP)之间的相容性,在PP/SF复合材料中添加超支化聚酯(H101)、超支化环氧树脂(E102),研究了两种超支化聚合物(HBP)的热稳定性及对PP/SF复合材力学性能、熔体流动性和微观形貌的影响。热重分析表明,所使用的HBP均具有较好的热稳定性;扫描电子显微镜分析发现,HBP的加入使基体与纤维结合得更加紧密;力学性能测试表明,H101可不同程度地提高复合材料的拉伸、弯曲及冲击强度;E102可提高复合材料的拉伸及冲击强度,当E102含量为10%时,与PP/SF复合材料相比,冲击强度提高了72.24%。尽管HBP含量较高时复合材料的力学性能提高,但HBP会降低复合材料的熔体流动速率,选择HBP含量时需要综合考虑。  相似文献   

4.
通过熔融共混的方法制备了丁苯热塑性弹性体/聚苯乙烯/剑麻纤维(SBS/PS/SF)复合材料。采用SBS/PS=70/30的配比,通过改变剑麻纤维用量,研究SBS/PS/SF复合材料的力学性能、热性能及熔体流动速率。结果表明:随着剑麻纤维用量的增加,SBS/PS/SF复合材料的弹性模量和弯曲强度都有所增加;熔体流动速率呈减小趋势;拉伸强度、断裂应变、屈服应变和冲击强度先上升后下降;SBS/PS/SF复合材料的维卡软化点随着剑麻纤维的加入也有着不同程度的下降。  相似文献   

5.
研究了偶联处理后的剑麻纤维(SF)对聚丙烯(PP)性能的影响,以马来酸酐接枝聚丙烯(PP-g-MAH)作为界面相容剂,制备了PP/SF/PP-g-MAH复合材料,考察了改性SF含量对PP/SF/PP-g-MAH复合材料流动性能、热性能、燃烧性能和力学性能的影响。结果表明,当SF含量由零增加到30%(质量分数,下同)时,PP/SF/PP-g-MAH复合材料的熔体流动速率降低了3.1g/10min,维卡软化温度升高了5.1℃,拉伸强度升高了6.0MPa,弯曲强度升高了20.7MPa,缺口冲击强度降低了3.1kJ/m~2,无缺口冲击强度降低了60kJ/m~2。  相似文献   

6.
采用碱处理、硅烷偶联剂处理以及两者复合的处理方法对剑麻纤维进行表面改性,研究了不同处理方法对剑麻纤维的性能以及剑麻纤维/淀粉复合材料界面粘结性能的影响。通过傅立叶变换红外光谱仪、热重分析仪、扫描电子显微镜和万能试验机对不同处理的剑麻纤维进行表征,使用拔出实验测试剑麻/淀粉复合材料的界面粘结情况,并采用二参数威布尔模型计算拉伸强度和界面剪切强度。结果表明,所有处理方法都能提高剑麻纤维的热稳定性和界面剪切强度。与未处理纤维相比,碱处理后的剑麻纤维与淀粉的界面剪切强度最高,为2.011 MPa,提高了19%。  相似文献   

7.
采用熔融共混、热压成型工艺制备聚丙烯(PP)/剑麻纤维(SF)木塑复合材料装饰板,研究了木塑复合材料浸水后力学性能、热性能和微观结构的变化趋势及原因。结果表明,当SF含量为50 %(质量分数,下同)、浸水时间为8 d时,木塑复合材料的冲击强度和弯曲强度下降幅度最大,分别达9.88 kJ/m2和21.02 MPa,与未浸水相比,分别下降了33.74 %和51.42 %;同时,木塑复合材料的热稳定性、PP相的结晶速率及结晶度也有所降低。  相似文献   

8.
采用经蒸汽爆破处理的剑麻纤维(SF),通过模压成型制备SF/PF共混复合材料,研究了SF用量、SF与玻璃纤维(GF)的配比对SF/PF复合材料力学性能的影响。结果表明:当SF用量为10%-15%、SF/GF质量配比为1/1时,SF/PF复合材料的各项力学性能都有所提高,耐磨损性能提高尤为显著;POM和SEM的观察结果表明,蒸汽爆破处理后的剑麻纤维,与基体材料的结合作用得到了明显改善。  相似文献   

9.
剑麻纤维/聚丙烯木塑复合材料的热氧老化性能研究   总被引:5,自引:1,他引:4  
以剑麻纤维(SF)、聚丙烯(PP)为原料,经熔融共混、模压成型工艺制备木塑复合材料。探讨了SF/PP复合材料的力学性能、热性能随老化时间和SF含量的变化规律,借助扫描电镜对复合材料老化前后的冲击断面进行微观结构分析。结果表明:老化后复合材料的冲击强度、弯曲强度和弯曲模量随剑麻含量的增加而降低;同时,复合材料中PP相的结晶速率、结晶度也有所降低,但复合材料的热稳定性基本没有变化。  相似文献   

10.
剑麻含量对SF/PP木塑复合材料性能影响   总被引:1,自引:0,他引:1  
采用模压成型技术将剑麻纤维(SF)和聚丙烯(PP)熔融复合制备SF/PP木塑复合材料,研究SF含量对复合材料力学性能、热性能、晶型结构和微观结构的影响。结果表明,随着SF含量的增加,复合材料的冲击强度、弯曲强度呈先升后降趋势;复合材料熔融热焓值逐渐降低,热分解温度有所提高,但PP相的晶态结构无变化。  相似文献   

11.
Unidirectional C/SiC composites were successfully prepared by hot pressing at 1850°C under 20 MPa, using different fiber volume fractions (from 28 vol% to 55 vol%) as reinforcement. The densification process of the composites became increasingly difficult with increasing fiber volume fraction, and some small pores were still distributed in the intrabundle regions of the composites. The cracks, resulting from the residual thermal stress in the composites due to the mismatch of the thermal expansion coefficient of the matrix and the fiber, were distributed in the matrix. With the increase of fiber content, the mechanical properties of the composites could be improved and the composites exhibited an obvious noncatastrophic fracture behavior due to a decrease in the thermal residual stress and an increase in the fiber pull outs.  相似文献   

12.
Green composites were produced from various cationically cured natural oil‐based resins and agricultural fibers. The natural oils and agricultural fibers of interest included corn, soybean, fish, and linseed oils and corn stover, wheat straw (WS), and switchgrass fibers. The effects of the types of natural oil and agricultural fiber on the structure and thermal and mechanical properties of the composites were studied using Soxhlet extraction, thermogravimetric and dynamic mechanical analysis, and tensile testing. The green composites, with agricultural fiber loadings of 75 wt %, have thermal stabilities up to 275°C. The Young's moduli and tensile strengths of the composites ranged from 1590 to 2300 and 5.5 to 11.3 MPa, respectively. In general, an increase in the degree of unsaturation of the natural oil resulted in improvements in the thermal and mechanical properties of the composites. The WS fibers tended to give composites with the best thermal and mechanical properties. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

13.
《Polymer Composites》2017,38(7):1259-1265
Chemical treatment of reinforcement material is one of the main ways of improving the mechanical properties of natural fiber reinforced polymer composites. In the present study, coir fiber was used as reinforcement material, while polypropylene (PP) and polyethylene (PE) polymer were used as matrix material. Before reinforcing with polymer, raw coir fiber was chemically treated with basic chromium sulfate and sodium bicarbonate in a sieve shaker. Hot‐pressed method was used for composite manufacturing during which the fiber loading was varied at 0, 5, 10, 15, and 20 wt%. Comparison of the properties of raw and chemically treated coir fiber reinforced PP and PE was conducted. Mechanical characteristics of the composites were evaluated using tensile, flexural, impact, and hardness tests. Water absorption test was conducted to know water uptake characteristics. Microstructural analysis using a scanning electron microscope was performed to observe the adhesiveness between the matrix and the fiber. Thermogravimetric analysis was done to observe the physical and chemical changes in fiber and composites. The results showed that chemical treatment improved the physical, mechanical, and thermal properties of the manufactured composites. PP composites had better properties as compared to PE composites, while higher fiber loading resulted in better mechanical properties of the resultant composites. POLYM. COMPOS., 38:1259–1265, 2017. © 2015 Society of Plastics Engineers  相似文献   

14.
《Polymer Composites》2017,38(5):837-845
Green composites, a bio‐based polymer matrix is reinforced by natural fibers, are special class of bio‐composites. Interest about green composites is continuously growing because they are environment‐friendly. This study describes the preparation and mechanical characterization of green composites using polylactic acid (PLA) matrix including chicken feather fiber (CFF) as reinforcement. Extrusion and an injection molding process were used to prepare CFF/PLA composites at a controlled temperature range. CFF/PLA composites with fiber mass content of 2%, 5%, and 10% were manufactured. The effects of fiber concentration and fiber length on mechanical properties of CFF/PLA composites have been studied. Mechanical properties of composites were investigated by tensile, compression, bending, hardness, and Izod impact testing. The results of experiments indicated that Young's modulus, compressive strength, flexural modulus, and hardness of the PLA reinforced CFF composites are higher but tensile strength, elongation at break, bending strength and impact strength of them are lower than pure PLA. The results indicate that these types of composites can be used for various applications. POLYM. COMPOS., 38:837–845, 2017. © 2015 Society of Plastics Engineers  相似文献   

15.
房昆 《工程塑料应用》2012,40(4):100-103
介绍了剑麻纤维(SF)的结构特点、物理力学性能以及纤维改性处理方法,从纤维形态及增强基质出发综述了长、短SF及SF混杂纤维增强复合材料以及SF增强热塑性、热固性树脂和弹性体复合材料方面的研究与开发,指出了SF增强复合材料今后的研究方向。  相似文献   

16.
Pyrocarbon (PyC) matrices were prepared in two kinds of quartz fiber preforms by chemical vapor infiltration (CVI), and then the fibers were leached by HF. Effects of CNTs on the microstructures and mechanical properties of the quartz fiber reinforced carbon composites and PyC matrices, as well as the interface behaviors of the fiber reinforced composites, were discussed. Randomly oriented CNTs reinforced PyC micro-composites account for the pseudo ISO structure and contribute to the mechanical properties of the PyC matrix. Relative strength between reinforcement and matrix and interface bonding significantly affect the mechanical behaviors of the quartz fiber reinforced pyrocarbon composites: Quartz fiber with low strength and strong interface bonding result in limited strengthening effect on flexural strength of the fiber reinforced composite; low strength unidirectional quartz fiber and weak interface bonding in a much stronger matrix result in limited strengthening effect on tensile strength of the composite.  相似文献   

17.
Natural rubber (NR) composites were prepared by incorporating short oil palm fibers of different lengths (viz., 2, 6, 10, and 14 mm) into natural rubber matrix in a mixing mill according to a base formulation. The curing characteristics of the mixes were studied and the samples were vulcanized at 150°C. The vulcanization parameters, processability characteristics, and tensile properties of these composites were analyzed. The effects of fiber length, orientation, loading, and fiber-matrix interaction on the mechanical properties of the green composites were studied. The reinforcement property of the alkali-treated fiber was compared with that of the untreated one. The extent of fiber orientation was studied from green strength measurements. From anisotropic swelling studies, the extent of fiber alignment and the strength of fiber–rubber interface adhesion were analyzed. Scanning electron microscopic (SEM) studies were carried out to analyze the fiber surface morphology, fiber pullout, and fiber–rubber interface.  相似文献   

18.
Completely biodegradable composites were prepared using modified wheat protein isolate (WPI) as matrix and the uniaxial natural fabric Hildegardia Populifolia as reinforcement. The WPI was cross‐linked with glutaraldehyde in the presence of glycerol plasticizer. These polymer composites were subsequently subjected to evaluation for their mechanical, morphological (SEM), thermal (TGA/DMA) properties, and biodegradation behavior. The mechanical properties such as tensile strength and flexural strength of the composite increased with increase in fabric loading up to 10% and decreased therefore. Further, the alkali treatment of the fabric and use of a coupling agent enhanced the mechanical properties. The scanning electron micrographs of the fractured surface of the composites indicated facilitation of better bonding between the matrix and reinforcement by the coupling agent. In case of thermal behavior, results indicated that the presence of fabric affected the thermal stability of polymer matrix. Biodegradability of the composites was also been studied by soil burial method, and the composites were found to degrade up to 95% in 35 days. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

19.
景倩  方庆红 《弹性体》2014,(2):40-43
将间苯二酚-甲醛改性棉籽蛋白等量代替炭黑填充天然橡胶(NR),利用红外光谱对棉籽蛋白和改性棉籽蛋白进行对比分析,研究了棉籽蛋白用量对橡胶复合材料静态力学性能、热空气老化性能及生热和剪切动态性能的影响。结果表明,棉籽蛋白中的氨基被取代;改性蛋白质低于9份时NR的综合力学强度增加,回弹性提高,抗老化性能提高;改性蛋白质使橡胶复合材料的生热性能降低,储能模量升高,损耗因子降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号