首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Dielectric barrier discharges (DBDs) have been widely used in ozone synthesis, materials surface treatment, and plasma medicine for their advantages of uniform discharge and high plasma-chemical reactivity. To improve the reactivity of DBDs, in this work, the O2 is added into Ar nanosecond (ns) pulsed and AC DBDs. The uniformity and discharge characteristics of Ar ns pulsed and AC DBDs with different O2 contents are investigated with optical and electrical diagnosis methods. The DBD uniformity is quantitatively analyzed by gray value standard deviation method. The electrical parameters are extracted from voltage and current waveforms separation to characterize the discharge processes and calculate electron density ne. The optical emission spectroscopy is measured to show the plasma reactivity and calculate the trend of electron temperature Te with the ratio of two emission lines. It is found that the ns pulsed DBD has a much better uniformity than AC DBD for the fast rising and falling time. With the addition of O2, the uniformity of ns pulsed DBD gets worse for the space electric field distortion by O2, which promotes the filamentary formation. While, in AC DBD, the added O2 can reduce the intensity of filaments, which enhances the discharge uniformity. The ns pulsed DBD has a much higher instantaneous power and energy efficiency than AC DBD. The ratio of Ar emission intensities indicates that the Te drops quickly with the addition of O2 both ns pulsed and AC DBDs and the ns pulsed DBD has an obvious higher Te and ne than AC DBD. The results are helpful for the realization of the reactive and uniform low temperature plasma sources.  相似文献   

2.
《等离子体科学和技术》2019,21(11):115502-76
In this paper,the influences of gas doping(O_2,N_2,Air)on the concentrations of reactive species and bactericidal effects induced by a He plasma jet are studied.Firstly,results show that gas doping causes an increase in voltage and a decrease in current compared with the pure He discharge under the same discharge power,which might be attributed to the different chemical characteristics of O_2 and N_2 and verified by the changes in the gaseous reactive species shown in the optical emission spectroscopy(OES) and Fourier transform infrared(FTIR)spectroscopy.Secondly,the concentrations of aqueous reactive oxygen species(ROS) and reactive nitrogen species(RNS) are tightly related to the addition of O_2 and N_2 into the working gas.The concentrations of aqueous NO_2~- and NO_3~- significantly increase while the concentrations of aqueous ROS decrease with the admixture of N_2.The addition of O_2 has little effect on the concentrations of NO_2~- and NO_3~- and pH values; however,the addition of O_2 increases the concentration of O_2~- and deceases the concentrations of H_2O_2 and OH.Finally,the results of bactericidal experiments demonstrate that the inactivation efficiency of the four types of plasma jets is He?+?O_2??He+AirHeHe+N_2,which is in accordance with the changing trend of the concentration of aqueous O_2~-.Simultaneously to the better understanding of the formation and removal mechanisms of reactive species in the plasma–liquid interaction,these results also prove the effectiveness of regulating the concentrations of aqueous reactive species and the bacteria inactivation effects by gas doping.  相似文献   

3.
A double-chamber gas-liquid phase DBD reactor (GLDR), consisting of a gas-phase discharge chamber and a gas-liquid discharge chamber in series, was designed to enhance the degradation of benzene and the emission of NOx. The performance of the GLDR on discharge characteristics, reactive species production and benzene degradation was compared to that of the single-chamber gas phase DBD reactor (GPDR). The effects of discharge gap, applied voltage, initial benzene concentration, gas flow rate and solution conductivity on the degradation and energy yield of benzene in the GLDR were investigated. The GLDR presents a higher discharge power, higher benzene degradation and higher energy yield than that of the GPDR. NO2 emission was remarkably inhibited in the GLDR, possibly due to the dissolution of NO2 in water. The benzene degradation efficiency increased with the applied voltage, but decreased with the initial concentration, gas flow rate, and gas discharge gap, while the solution conductivity presented less influence on benzene degradation. The benzene degradation efficiency and the energy yield reached 61.11% and 1.45 g kWh–1 at 4 mm total gas discharge gap, 15 kV applied voltage, 200 ppm benzene concentration, 0.2 L min−1 gas flow rate and 721 μS cm−1 water conductivity. The intermediates and byproducts during benzene degradation were detected by FT-IR, GC-MS and LC-MS primarily, and phenols, COx, and other aromatic substitutes, O3, NOx, etc, were determined as the main intermediates. According to these detected byproducts, a possible benzene degradation mechanism was proposed.  相似文献   

4.
A key problem in CO_2 conversion by thermal plasma is suppressing the inverse reactions,CO?+?O?→?CO_2 and CO?+?0.5O_2?→?CO_2, to simultaneously obtain high CO yield and energy efficiency. This can be done by quickly quenching the decomposed gas or rapidly taking away free oxygen from decomposed gas. In this paper, experiments of CO_2 conversion by thermal plasma with carbon as a reducing agent are presented. Carbon quickly devoured free oxygen in thermal plasma decomposed gas, and not only is the inverse reaction completely suppressed, but the discharge energy to form oxygen atoms, oxygen molecular, and thermal energy is also reused.A CO_2 conversion rate of 67%–94% and the corresponding electric energy efficiency of about 70% are achieved, both are much higher than that seen so far by other plasma implementations.  相似文献   

5.
Air pollution is a major health problem in developing countries and has adverse effects on human health and the environment. Non-thermal plasma is an effective air pollution treatment technology. In this research, the performance of a dielectric barrier discharge (DBD) plasma reactor packed with glass and ceramic pellets was evaluated in the removal of SO2 as a major air pollutant from air in ambient temperature. The response surface methodology was used to evaluate the effect of three key parameters (concentration of gas, gas flow rate, and voltage) as well as their simultaneous effects and interactions on the SO2 removal process. Reduced cubic models were derived to predict the SO2 removal efficiency (RE) and energy yield (EY). Analysis of variance results showed that the packed-bed reactors (PBRs) studied were more energy efficient and had a high SO2 RE which was at least four times more than that of the non-packed reactor. Moreover, the results showed that the performance of ceramic pellets was better than that of glass pellets in PBRs. This may be due to the porous surface of ceramic pellets which allows the formation of microdischarges in the fine cavities of a porous surface when placed in a plasma discharge zone. The maximum SO2 RE and EY were obtained at 94% and 0.81 g kWh−1, respectively under the optimal conditions of a concentration of gas of 750 ppm, a gas flow rate of 2 l min−1, and a voltage of 18 kV, which were achieved by the DBD plasma packed with ceramic pellets. Finally, the results of the model's predictions and the experiments showed good agreement.  相似文献   

6.
Non-thermal plasma has emerged as an effective treatment system against the latest class of highly recalcitrant and toxic environmental pollutants termed emerging contaminants (ECs). In the present work, a detailed experimental study is carried out to evaluate the efficacy of a non-thermal plasma jet with two dyes, Rd. B and Met. Blue, as model contaminants. The plasma jet provided a complete dye decoloration in 30 min with an applied voltage of 6.5 kVp−p. ·OH, having the highest oxidation potential, acts as the main reactive species, which with direct action on contaminants also acts indirectly by getting converted into H2O2 and O3. Further, the effect of critical operational parameters viz, sample pH, applied voltage (4.5‒6.5 kVp−p), conductivity (5‒20 mS cm−1), and sample distance on plasma treatment efficacy was also examined. Out of all the assessed parameters, the applied voltage and sample conductivity was found to be the most significant operating parameters. A high voltage and low conductivity favored the dye decoloration, while the pH effect was not that significant. To understand the influence of plasma discharge gas on treatment efficacy, all the experiments are conducted with argon and helium gases under the fixed geometrical configuration. Both the gases provided a similar dye decoloration efficiency. The DBD plasma system with complete dye removal also rendered maximum mineralization of 73% for Rd. B, and 60% for Met. Blue. Finally, the system's efficiency against the actual ECs (four pharmaceutical compounds, viz, metformin, atenolol, acetaminophen, and ranitidine) and microbial contaminant (E. coli) was also tested. The system showed effectivity in the complete removal of targeted pharmaceuticals and a log2.5 E. coli reduction. The present systematic characterization of dye degradation could be of interest to large communities working towards commercializing plasma treatment systems.  相似文献   

7.
A typical quinolones antibiotic ciprofloxacin(CIP) in aqueous solution was degraded by a gas–liquid discharge non-thermal plasma system. The discharge plasma power and the emission intensity of the excited reactive species(RS) generated in the gas phase were detected by the oscilloscope and the optical emission spectroscopy. The effects of various parameters on CIP degradation, i.e. input powers, initial concentrations addition of radical scavengers and p H values were investigated. With the increase of discharge power, the degradation efficiency increased but the energy efficiency significantly reduced. The degradation efficiency also reduced under high concentration of initial CIP conditions due to the competitive reactions between the plasma-induced RS with the degradation intermediates of CIP. Different radical scavengers(isopropanol and CCl_4) on ·OH and H· were added into the reaction system and the oxidation effects of ·OH radicals have been proved with high degradation capacity on CIP.Moreover, the long-term degradation effect on CIP in the plasma-treated aqueous solution proved that the long-lived RS(H_2O_2 and O_3, etc) might play key roles on the stay effect through multiple aqueous reactions leading to production of ·OH. The degradation intermediates were determined by the method of electrospray ionization(+)-mass spectroscopy, and the possible degradation mechanism were presented.  相似文献   

8.
The ε-Fe3N-based magnetic lubricant which is stable and high saturation magnetization has been prepared by a homemade DBD device under the atmospheric pressure. The results show that the NH3 flow rate, the applied peak-to-peak voltage and the mass ratio of surfactant and carrier lubricant have important effects on the phase structure, the magnetic properties, the size of ferroparticles and the stability of the ε-Fe3N-based magnetic lubricant. TEM images show the ε-Fe3N ferroparticles are dispersed in the carrier lubricant homogeneously, and the cluster phenomenon is not observed. The stable ε-Fe3N-based magnetic lubricant with the saturation magnetization of 50.11 mT and the mean ferroparticle size of 11 nm is prepared successfully. The main particles of the atmospheric-pressure Ar/NH3/Fe(CO)5 DBD plasma are NH, N, N+, Fe, N2, Ar, Hα, and CO; NH is a decomposition product of NH3. Fe and N active radicals are two elementary species in the preparation of the ε-Fe3N-based magnetic lubricant in the atmospheric-pressure DBD plasma. There are two discharge modes for DBD plasma, namely, multi-pulse APGD and filamentary discharge. By increasing the applied peak-to-peak voltage from 4600 to 7800 V, the discharge mode is changed from single-pulse APGD with filamentary discharge to two-pulse APGD with filamentary discharge, and the Lissajous figure also converts from a quadrilateral with one step to two steps on the right-hand side.  相似文献   

9.
Efficient sterilization by a plasma photocatalytic system(PPS) requires strong synergy between plasma and photocatalyst to inactivate microorganisms while suppressing the formation of secondary pollutants.Here,we report that a PPS constructed from a needle array corona discharge and Au/TiO2 plasmonic nanocatalyst could remarkably improve the sterilization of Escherichia coli(E.coli) and alleviate formation of the discharge pollutant O3.At 6 kV,the combination of corona disc...  相似文献   

10.
《等离子体科学和技术》2019,21(11):115503-85
An efficient toluene removal in air using a plasma photocatalytic system(PPS) not only needs favorable surface reactions over photocatalysts under the action of plasma,but also requires the photocatalysts to efficiently absorb light emitted from the discharge for driving the photocatalytic reactions. We report here that the PPS constructed by integrating a black titania(B-TiO_2)photocatalyst with a dielectric barrier discharge(DBD) can effectively remove toluene with above 70% CO_2 selectivity and remarkably reduced the concentration of secondary pollutants of ozone and nitrogen oxides at a specific energy input of 1500 J·l~(-1),while exhibiting good stability. Photocatalyst characterizations suggest that the B-TiO_2 provides a high concentration of oxygen vacancies for the surface oxidation of toluene in DBD,and efficiently absorbs ultraviolet–visible light emitted from the discharge to induce plasma photocatalytic oxidation of toluene. The presence of B-TiO_2 in the plasma region also results in a high discharge efficiency,facilitating the generation of large numbers of reactive species and thus the oxidation of toluene towards CO_2. The greatly enhanced performance of the PPS integrated with B-TiO_2 in toluene removal offers a promising approach to efficiently remove refractory volatile organic compounds from air at low temperatures.  相似文献   

11.
A coaxial dielectric barrier discharge (DBD) reactor was used for plasma-catalytic degradation of tetracycline hydrochloride over a series ofMn/γ-Al2O3 catalysts prepared by the incipient wetness impregnation method. The combination of plasma and theMn/γ-Al2O3 catalysts significantly enhanced the degradation efficiency of tetracycline hydrochloride compared to the plasma process alone, with the 10%Mn/γ-Al2O3 catalyst exhibiting the best tetracycline hydrochloride degradation efficiency. A maximum degradation efficiency of 99.3% can be achieved after 5 min oxidation and a discharge power of 1.3 W, with only 69.7% by a single plasma process. The highest energy yield of the plasma-catalytic process is 91.7 gkWh−1. Probable reaction mechanisms of the plasma-catalytic removal of tetracycline hydrochloride were also proposed.  相似文献   

12.
为实现聚变堆氘氚燃料工艺气中痕量杂质气体组分的快速检测分析,需建立特殊的高精度在线气相色谱检测分析方法。以高纯氦作为载气,在不同的色谱柱温度和载气流速控制下,通过分子筛毛细管柱和PLOT-Q柱进行分离,采用放电氦离子化检测器(DID)进行检测,对氦中含量为1、10以及100 ppm的杂质标准气体进行检测分析。结果表明:在柱温为40 ℃、流速为15~20 mL/min实验条件下,分子筛柱在160 s内能够实现H2、O2、N2、CH4和CO全部分离,且柱效较高,响应值的重复性较好,H2和O2之间的分离度高于1.5,实现了完全分离;在柱温为40 ℃、流速为20 mL/min时,PLOT-Q柱分离CO2组分效果最佳。  相似文献   

13.
The objective of this work is to contribute an understanding of the effects of electrons in the plasmas on the mass transfer of plasma species in aqueous solution by means of the numerical simulation based on a one-dimensional diffusion-reaction model. The plasma species are divided into two groups, i.e. electrons and the other species, and the mass transfer in the three scenarios has been simulated, including the systematic calculations of the depth distributions of five major reactive species, OH, O3, HO2 , O2-, and H2O2 . In the three scenarios, the particles considered to enter into aqueous solution are all the plasma species (the scenario I, where the mass transfer of plasma species is a result due to the synergy of the electrons and the other plasma species), the other species (the scenario II), and only electrons in plasma species (the scenario III), respectively. The detailed analyses on the difference between the depth distributions of each reactive species in these three scenarios show the following conclusions. The electrons play an important role in the mass transfer of plasma species in aqueous solution and the synergy of the electrons and the other plasma species (the electron-species synergy) presents its different effects on the mass transfer. The vast majority of H2O2 are generated from a series of the electron- related reactions in aqueous solution, which is hardly affected by the electron-species synergy. Compared to the results when only the electrons enter into the liquid region, the electron-species synergy evidently weakens the generation of O2-, O3 , and OH, but promotes to produce HO2 .  相似文献   

14.
15.
Perfluorocarbon gas is widely used in the semiconductor industry. However, perfluorocarbon has a negative effect on the global environment owing to its high global warming potential (GWP) value. An alternative solution is essential. Therefore, we evaluated the possibility of replacing conventional perfluorocarbon etching gases such as CHF3 with C6F12O, which has a low GWP and is in a liquid state at room temperature. In this study, silicon oxynitride (SiON) films were plasma-etched using inductively coupled CF4 +C6F12O+O2 mixed plasmas. Subsequently, the etching characteristics of the film, such as etching rate, etching profile, selectivity over Si, and photoresist, were investigated. A double Langmuir probe was used and optical emission spectroscopy was performed for plasma diagnostics. In addition, a contact angle goniometer and x-ray photoelectron spectroscope were used to confirm the change in the surface properties of the etched SiON film surface. Consequently, the etching characteristics of the C6F12O mixed plasma exhibited a lower etching rate, higher SiON/Si selectivity, lower plasma damage, and more vertical etched profiles than the conventional CHF3 mixed plasma. In addition, the C6F12O gas can be recovered in the liquid state, thereby decreasing global warming. These results confirmed that the C6F12O precursor can sufficiently replace the conventional etching gas.  相似文献   

16.
In this paper,the collective effects of combining heterogeneous Ag/TiO_2 nanocomposite catalyst with the byproducts(primarily the irradiation and the O_3 species) of an atmospheric pressure plasma jet(APPJ) system on the degradation of methyl orange(MO) were explored.The heterostructured Ag/TiO_2 nanocomposite was achieved via decorating the Ag quantum dots(QDs) on the commercially available TiO_2catalyst(P25) through a hydrothermal method.The x-ray diffraction analysis of the nanocomposite catalyst showed the diffraction peaks at 44.3°,64.4°,and 77.5°,corresponding to the Ag planes of(200),(220) and(311),respectively.The high resolution transmission electron microscope characterization of the nanocomposite catalyst indicated that the Ag QDs with an average diameter of 5 nm were homogeneously distributed on the P25 surface.The experimental results on the MO photodegradation showed that the APPJ irradiation had a marginal effect on the cleavage of the MO molecules.When the Ag/TiO_2 nanocomposite catalyst was used,the photodegradation rate of MO increased about 5 times.When both the APPJ byproducts and the Ag/TiO_2 nanocomposite catalyst were used,however,over 90% of the MO in the tested solution was cleaved within 15 min,and the energy efficiency was about 0.6 g/k W h.Moreover,an optimal Ag dosage value was determined(6 wt%).The catalytic results indicated that combining the DBD plasma byproducts with heterogeneous nanocomposite catalysts may be an effect protocol for decreasing the application cost of the DBD system and mitigating the environment pollution by organic dyes in the textile industry.  相似文献   

17.
Cold atmospheric plasma jet is widely used in many fields due to the reactive oxygen species and low temperature for heat-sensitive products. This paper presents the inactivation of bacteria via a pulsed plasma jet with He/O2 mixed gas. To evaluate the disinfection performance, Staphylococcus aureus was used as an indicator bacteria for experiments. When the plasma jet dealt with agar plates spraying bacteria, it was found that mixed gas has a better performance than pure inert gas, indicated by the disinfection area. The increment of oxygen gas addition was beneficial to the disinfection ability of the plasma jet, while the gas had an opposite effect on the length of jet production. The experiments showed the efficacy of Staphylococcus aureus disinfection could reach up to 99.47% via a helium/oxygen (2%) plasma jet.  相似文献   

18.
A self-cooling dielectric barrier discharge reactor, packed with foamed Cu and Ni mesh and operated at ambient conditions, was used for the composition of CO2 into CO and O2. The influences of power, frequency, and other discharge characteristics were investigated in order to have a better understanding of the effect of the packing materials on CO2 decomposition. It is found that porous foamed Cu and Ni not only played a role as the carrier of energy transformation and electrode distributed in discharge gaps but also promoted the equilibrium shifting toward the product side to yield more CO by consuming some part of O2 and O radicals generated from the decomposition of CO2. The maximum CO2 decomposition rates of 48.6% and 49.2% and the maximum energy efficiency of 9.71% and 10.18% were obtained in the foamed Ni and Cu mesh, respectively.  相似文献   

19.
UV-pulsed laser cavity ringdown spectroscopy of the hydroxyl radical OH(A–X)(0–0)band in the wavelength range of 306–310 nm was employed to determine absolute number densities of OH in the atmospheric helium plasma jets generated by a 2.45 GHz microwave plasma source.The effect of the addition of molecular gases N_2 and O_2 to He plasma jets on OH generation was studied.Optical emission spectroscopy was simultaneously employed to monitor reactive plasma species.Stark broadening of the hydrogen Balmer emission line(H_β)was used to estimate the electron density nein the jets.For both He/N_2 and He/O_2 jets, newas estimated to be on the order of 10~(15)cm~(-3).The effects of plasma power and gas flow rate were also studied.With increase in N_2 and O_2 flow rates, netended to decrease.Gas temperature in the He/O_2 plasma jets was elevated compared to the temperatures in the pure He and He/N_2 plasma jets.The highest OH densities in the He/N_2 and He/O_2 plasma jets were determined to be 1.0?×10~(16)molecules/cm~3 at x?=?4 mm(from the jet orifice)and 1.8?×?10~(16)molecules/cm~3 at x=3 mm, respectively.Electron impact dissociation of water and water ion dissociative recombination were the dominant reaction pathways, respectively, for OH formation within the jet column and in the downstream and far downstream regions.The presence of strong emissions of the N_2~+ bands in both He/N_2 and He/O_2 plasma jets, as against the absence of the N_2~+ emissions in the Ar plasma jets, suggests that the Penning ionization process is a key reaction channel leading to the formation of N_2~+ in these He plasma jets.  相似文献   

20.
Organic templates P-123 of mesoporous SBA-15 can be effectively removed in a few minutes (4min) by using the dielectric-barrier discharge (DBD) plasma technique at ambient pressure and low gas temperature (around 130°C). The mesoporous SBA-15 was characterized by FT-IR, 29 Si solid sate NMR, TEM, XRD, TGA and N2 adsorption/desorption isotherms. The as-made SBA-15 treated with DBD plasma exhibited a larger surface area of 790 m 2·g −1 with larger pores and microspore volume than samples prepared by using the conventional thermal calcination method (550 °C and 5h, 660 m 2·g −1 ). In addition to less shrinkage of the silica framework, the DBD-prepared SBA-15 showed significantly increased weight loss of 8.3% about 200 °C as compared with that of conventional calcination (5.5%), which is attributed mainly to the dehydroxylation by condensation of silanol groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号