首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A coaxial dielectric barrier discharge(DBD) reactor with double layer dielectric barriers has been developed for exhaust gas treatment and excited either by AC power or nanosecond(ns)pulse to generate atmospheric pressure plasma. The comparative study on the discharge characteristics of the discharge uniformity, power deposition, energy efficiency, and operation temperature between AC and ns pulsed coaxial DBD is carried out in terms of optical and electrical characteristics and operation temperature for optimizing the coaxial DBD reactor performance. The voltages across the air gap and dielectric layer and the conduction and displacement currents are extracted from the applied voltages and measured currents of AC and ns pulsed coaxial DBDs for the calculation of the power depositions and energy efficiencies through an equivalent electrical model. The discharge uniformity and operating temperature of the coaxial DBD reactor are monitored and analyzed by optical images and infrared camera. A heat conduction model is used to calculate the temperature of the internal quartz tube. It is found that the ns pulsed coaxial DBD has a much higher instantaneous power deposition in plasma, a lower total power consumption, and a higher energy efficiency compared with that excited by AC power and is more homogeneous and stable. The temperature of the outside wall of the AC and ns pulse excited coaxial DBD reaches 158 ℃ and 64.3 ℃ after 900 s operation, respectively.The experimental results on the comparison of the discharge characteristics of coaxial DBDs excited by different powers are significant for understanding of the mechanism of DBDs,reducing energy loss, and optimizing the performance of coaxial DBD in industrial applications.  相似文献   

2.
The effects of driving frequency on plasma parameters and electron heating efficiency are studied in cylindrical inductively coupled plasma (ICP) source. Measurements are made in an Ar discharge for driving frequency at 13.56/2 MHz, and pressures of 0.4–1.2 Pa. In 13.56 MHz discharge, higher electron density (ne) and higher electron temperature (Te) are observed in comparison with 2 MHz discharge at 0.6–1.2 Pa. However, slightly higherne andTe are observed in 2 MHz discharge at 0.4 Pa. This observation is explained by enhanced electron heating efficiency due to the resonance between the oscillation of 2 MHz electromagnetic field and electron-neutral collision process at 0.4 Pa. It is also found that the variation ofTe distribution is different in 13.56 and 2 MHz discharge. For ICP at 13.56 MHz, Te shows an edge-high profile at 0.4–1.2 Pa. For 2 MHz discharge,Te remains an edge-high distribution at 0.4–0.8 Pa. However, the distribution pattern involves into a center-high profile at 0.9–1.2 Pa. The spatial profiles ofne remain a center-high shape in both 13.56 and 2 MHz discharges, which indicates the nonlocal kinetics at low pressures. Better uniformity could be achieved by using 2 MHz discharge. The effects of gas pressure on plasma parameters are also examined. An increase in gas pressure necessitates the rise ofne in both 13.56 and 2 MHz discharges. Meanwhile, Te drops when gas pressure increases and shows a flatter distribution at higher pressure.  相似文献   

3.
Plasma source is the most important part of the laboratory plasma platform for fundamental plasma experimental research. Barium oxide coated cathode plasma source is well recognized as an effective technique due to its high electron emission current. An indirectly heated oxide coated cathode plasma source has been constructed on a linear magnetized plasma device. The electron emission current density can reach 2 A/cm 2 to 6 A/cm 2 in pulsed mode within pulse length 5–20 ms. A 10 cm diameter, 2 m long plasma column with density 10 18 m −3 to 10 19 m 3 and electron temperature Te ≈ 3–7 eV is produced. The spatial uniformity of the emission ability is less than 4% and the discharge reproducibility is better than 97%. With a wide range of the plasma parameters, this kind of plasma source provides great flexibility for many basic plasma investigations. The detail of construction and initial characterization of oxide coated cathode are described in this paper.  相似文献   

4.
In the paper, a hybrid gas–liquid dielectric barrier discharge (DBD) plasma system was set up to treat a methylene blue (MB) solution. The effects of the change of the carrier gas, the gas bubbling rate and different kinds of scavenger addition, including sodium carbonate (Na2CO3), para benzoquinone (p-BQ), triethylenediamine and sodium dihydrogen phosphate (NaH2PO4), on the MB decoloration were reviewed to clarify the critical active species for the dye decoloration in the DBD plasma system. The obtained results show that higher decoloration of the MB solution could be achieved when O2 was used as the carrier gas, which could be 100% after 20 min discharge treatment, and the result confirmed the crucial effect of O3 in the MB decoloration. Based on the experiments of the scavenger addition, it could be concluded that O2 and 1O2 were two other important reactive oxygen species (ROS) for the MB decoloration. The results of the higher chemical oxygen demand removal and faster disappearance of the characteristic peak of the MB from the UV–vis analysis under O2 bubbling conditions also proved the critical effect of the ROS formed by O2 on the MB decoloration.  相似文献   

5.
A double-chamber gas-liquid phase DBD reactor (GLDR), consisting of a gas-phase discharge chamber and a gas-liquid discharge chamber in series, was designed to enhance the degradation of benzene and the emission of NOx. The performance of the GLDR on discharge characteristics, reactive species production and benzene degradation was compared to that of the single-chamber gas phase DBD reactor (GPDR). The effects of discharge gap, applied voltage, initial benzene concentration, gas flow rate and solution conductivity on the degradation and energy yield of benzene in the GLDR were investigated. The GLDR presents a higher discharge power, higher benzene degradation and higher energy yield than that of the GPDR. NO2 emission was remarkably inhibited in the GLDR, possibly due to the dissolution of NO2 in water. The benzene degradation efficiency increased with the applied voltage, but decreased with the initial concentration, gas flow rate, and gas discharge gap, while the solution conductivity presented less influence on benzene degradation. The benzene degradation efficiency and the energy yield reached 61.11% and 1.45 g kWh–1 at 4 mm total gas discharge gap, 15 kV applied voltage, 200 ppm benzene concentration, 0.2 L min−1 gas flow rate and 721 μS cm−1 water conductivity. The intermediates and byproducts during benzene degradation were detected by FT-IR, GC-MS and LC-MS primarily, and phenols, COx, and other aromatic substitutes, O3, NOx, etc, were determined as the main intermediates. According to these detected byproducts, a possible benzene degradation mechanism was proposed.  相似文献   

6.
The study of sulfur hexafluoride (SF6) discharge is vital for its application in gas-insulated equipment. Direct current partial discharge (PD) may cause SF6 decomposition, and the decomposed products of SF6, such as F atoms, play a dominant role in the breakdown of insulation systems. In this study, the PD caused by metal protrusion defects is simulated by a needle-plate electrode using pulsed high voltage in SF6/Ar mixtures. The spatial and temporal characteristics of SF6/Ar plasma are analyzed by measuring the emission spectra of F and Ar atoms, which are important for understanding the characteristics of PD. The spatial resolved results show that both F and Ar atom spectral intensities increase first from the plate anode to the needle and then decrease under the conditions of a background pressure of 400 Pa, peak voltage of −1000 V, frequency of 2 kHz, pulse width of 60 μs, and electrode gap of 5–9 mm. However, the distribution characteristics of F and Ar are significantly different. The temporal distribution results show that the spectral intensity of Ar decreases first and then increases slowly, while the spectral intensity of F increases slowly for the duration of the pulsed discharge at the electrode gap of 5 mm and the pulse width of 40–80 μs.  相似文献   

7.
Optical emission spectroscopy is used to investigate the nitrogen-hydrogen with trace rare gas (4% Ar) plasma generated by 50 Hz pulsed DC discharges. The filling pressure varies from 1 mbar to 5 mbar and the current density ranges from 1 mA·cm −2 to 4 mA·cm −2 . The hydrogen concentration in the mixture plasma varies from 0% to 80%, with the objective of identifying the optimum pressure, current density and hydrogen concentration for active species ([N] and [N 2 ]) generation. It is observed that in an N 2 -H 2 gas mixture, the concentration of N atom density decreases with filling pressure and increases with current density, with other parameters of the discharge kept unchanged. The maximum concentrations of active species were found for 40% H 2 in the mixture at 3 mbar pressure and current density of 4 mA·cm −2  相似文献   

8.
In this paper, a two-dimensional axisymmetric fluid model was established to investigate the influence of nitrogen impurity content on the discharge pattern and the relevant discharge characteristics in an atmosphere pressure helium dielectric barrier discharge (DBD). The results indicated that when the nitrogen content was increased from 1 to 100 ppm, the discharge pattern evolved from a concentric-ring pattern into a uniform pattern, and then returned to the concentricring pattern. In this process, the discharge mode at the current peak moment transformed from glow mode into Townsend mode, and then returned to glow mode. Further analyses revealed that with the increase of impurity level, the rate of Penning ionization at the pre-ionization stage increased at first and decreased afterwards, resulting in a similar evolution pattern of seed electron level. This evolution trend was believed to be resulted from the competition between the N2 partial pressure and the consumption rate of metastable species. Moreover, the discharge uniformity was found positively correlated with the spatial uniformity of seed electron density as well as the seed electron level. The reason for this correlation was explained by the reduction of radial electric field strength and the promotion of seed electron uniformity as pre-ionization level increases. The results obtained in this work may help better understand the pattern formation mechanism of atmospheric helium DBD under the variation of N2 impurity level, thereby providing a possible means of regulating the discharge performance in practical application scenarios.  相似文献   

9.
In this paper, the generation of excimers and exciplexe radiation in mixtures of rare gas with halogen by homogeneous dielectric barrier discharge (DBD) is investigated. The typical characteristics of an excilamp based on KrCl exciplexe molecules and the kinetic processes for the formation and the decay of this molecules in the Kr/Cl2 mixture are studied. The computer model developed is based on the Kr/Cl2 mixture chemistry, the equivalent electric circuit and the Boltzmann equations. The importance in the kinetic processes of some species such as the metastable state of Krypton (Kr(3P0,2)) and the negative ion of chloride (Cl) is considered. The results illustrate the time variations of charged species (ne,Kr+,Cl,Cl+,Cl+2,Kr+2), excited atoms and molecules (Kr(3P0,2), Kr(3P1), Cl, Cl2), the excimers (Kr2,KrCl(B),KrCl(C),Kr2Cl) and the UV photon concentrations (in 222nm,235nm,258nm and 325nm range). The effects of chlorine concentration and the total gas pressure in the Kr-Cl2 discharge on the electric parameters and radiation emissions are investigated.  相似文献   

10.
The Ar atmospheric pressure plasma was found to be an excellent laboratorial source for green aurora emission. However, the characteristic and production mechanism of the green aurora emission of the Ar atmospheric pressure plasma are still not clear. In this work, an Ar plasma in a long glass tube which emits intense green aurora light is investigated. With the long glass tube, it can be concluded that the green aurora emission in the Ar plasma is not owing to the mixture of Ar plasma plume with the surrounding air. It is also found that the green aurora emission often appeared beyond the active electrode when the active electrode is placed at the downstream of the gas flow. The green emission disappears when the traces amount of O2 or N2 (about 0.05%–0.07%) is added to Ar. This is because the O2 molecules deactivate the upper state O(1S), which results in the decrease of the green emission. On the other hand, when N2 is added, Ar metastable atoms are quenched by N2, which results in the decrease of O atoms and eventually leads to the decrease of the green emission intensity. The intensity of the green aurora emission increases when the driving voltage frequency increases from 1 to 10 kHz. More importantly, it is found that the green aurora emission is not affected when a grounded stainless steel needle is in contact with the plasma plume. Thus, the green emission is not driven electrically. All these findings are helpful for the understanding of the physics and its applications of atmospheric pressure plasma jet in space physics, laser physics and other application areas.  相似文献   

11.
This work presents the first electrical and optical measurements of the initial phase of hydrogen discharge in the upgraded spherical tokamak GLAST-III, initiated with electron cyclotron heating (ECH). Diagnostic measurements provide insights into expected and unexpected physics issues related to the initial phase of discharge. A triple Langmuir probe (TLP) has been developed to measure time series of the floating potential, plasma electron temperature and number density over the entire discharge, allowing monitoring of the two phases of the discharge: the ECH pre-ionization phase following by the plasma current formation phase. A TLP has the ability to give time-resolved measurements of the floating potential (Vfloat), electron temperature (Te) and ion saturation current (Isat∝ ne√kTe). The evolution of the ECH-assisted pre-ionization and subsequent plasma current phases in one shot are well envisioned by the probe. Intense fluctuations in the plasma current phase advocate for efficient equilibrium and feedback control systems. Moreover, the emergence of some strong impurity lines in the emission spectrum, even after only a few shots, suggests a crucial need for improvements in the base vacuum level. A noticeable change in the shape of the temporal profiles of the floating potential, electron temperature, ion saturation current (Isat) and light emission has been observed with changing hydrogen fill pressure and vertical magnetic field.  相似文献   

12.
13.
In this work, a single Al2O3 particle packed dielectric barrier discharge (DBD) reactor with adjustable discharge gap is built, and the influences of the particle shape (ball and column) and the residual gap between the top electrode and particle on the electrical and optical characteristics of plasma are studied. Our research confirms that streamer discharge and surface discharge are the two main discharge patterns in the single-particle packed DBD reactor. The strong electric field distortion at the top of the ball or column caused by the dielectric polarization effect is an important reason for the formation of streamer discharge. The length of streamer discharge is proportional to the size of the residual gap, but the number of discharge times of a single voltage cycle shows an opposite trend. Compared to the column, a smooth spherical surface is more conducive to the formation of large and uniform surface discharges. The surface discharge area and the discharge intensity reach a maximum when the gap is equal to the diameter of the ball. All in all, the results of this study will provide important theoretical support for the establishment of the synergistic characteristics of discharge and catalysis in plasma catalysis.  相似文献   

14.
Fast photography and optical emission spectroscopy are implemented in a 5 mm neon gap dielectric barrier discharge (DBD) at atmospheric pressure with quartz glass used as the dielectric layer. Results show that it starts with a Townsend discharge and ends at a sub-normal glow discharge in neon DBD. Based on the Townsend discharge, the first ionization coefficient of neon is measured. The measurements are consistent with those at low pressure. Optical emission spectroscopy indicates that the spectra are mainly composed of atomic lines of neon, molecular bands and molecular ion bands originating from inevitable gas impurities (mainly nitrogen). Moreover, spectral lines emitted from atomic neon corresponding to the transitions (2p5 3p → 2p5 3s) are predominant. Although the second positive system of N2(C3Πu → B3Πg) is observed, their intensities are too weak compared with neon's spectrum. The molecular nitrogen ion line of 391.4 nm is observed. It reveals that Penning ionization between high energy neon excited states and the inevitable gas impurities plays an important role in the value of the α coefficient.  相似文献   

15.
Non-thermal equilibrium atmospheric pressure plasma jet (APPJ) is a cold plasma source that promises various innovative applications,and the uniform APPJ is more favored.Glow discharge is one of the most effective methods to obtain the uniform discharge.Compared with the glow dielectric barrier discharge (DBD) in atmospheric pressure,pure helium APPJ shows partial characteristics of both the glow discharge and the streamer.In this paper,considering the influence of the Penning effect,the electrical and optical properties of He APPJ and Ar/NH3 APPJ were researched.A word "Glow-like APPJ" is used to characterize the uniformity of APPJ,and it was obtained that the basic characteristics of the glow-like APPJ are driven by the kHz AC high voltage.The results can provide a support for generating uniform APPJ,and lay a foundation for its applications.  相似文献   

16.
The ε-Fe3N-based magnetic lubricant which is stable and high saturation magnetization has been prepared by a homemade DBD device under the atmospheric pressure. The results show that the NH3 flow rate, the applied peak-to-peak voltage and the mass ratio of surfactant and carrier lubricant have important effects on the phase structure, the magnetic properties, the size of ferroparticles and the stability of the ε-Fe3N-based magnetic lubricant. TEM images show the ε-Fe3N ferroparticles are dispersed in the carrier lubricant homogeneously, and the cluster phenomenon is not observed. The stable ε-Fe3N-based magnetic lubricant with the saturation magnetization of 50.11 mT and the mean ferroparticle size of 11 nm is prepared successfully. The main particles of the atmospheric-pressure Ar/NH3/Fe(CO)5 DBD plasma are NH, N, N+, Fe, N2, Ar, Hα, and CO; NH is a decomposition product of NH3. Fe and N active radicals are two elementary species in the preparation of the ε-Fe3N-based magnetic lubricant in the atmospheric-pressure DBD plasma. There are two discharge modes for DBD plasma, namely, multi-pulse APGD and filamentary discharge. By increasing the applied peak-to-peak voltage from 4600 to 7800 V, the discharge mode is changed from single-pulse APGD with filamentary discharge to two-pulse APGD with filamentary discharge, and the Lissajous figure also converts from a quadrilateral with one step to two steps on the right-hand side.  相似文献   

17.
As an important type of metal–organic framework (MOF), Zr-MOF shows excellent CO2 adsorption performance. In this work, a Zr-MOF was synthesized by a solvothermal method and adopted to support Ru through simple incipient-wetness impregnation. Then the Ru/Zr-MOF was applied for CO2 hydrogenation (VH2 : VCO2= 4:1) with the assistance of dielectric barrier discharge (DBD) plasma. The hydrogenation of CO2 results showed that methane was produced selectively under the synergistic effect between plasma and the Ru/Zr-MOF catalyst, and the selectivity and yield of methane reached 94.6% and 39.1%, respectively. The XRD and SEM analyses indicate that the basic crystalline phase structure and morphology of the Zr-MOF and Ru/Zr-MOF remained the same after DBD plasma treatment, suggesting that the catalysts are stable in plasma. The guest molecules in the pores of the Zr-MOF are removed and the Ru3+ ions are reduced to metallic Ru0 in the reduction atmosphere according to the BET and XPS results, which are responsible for the high performance of plasma with the Ru/Zr-MOF catalyst. In situ optical emission spectra of pure plasma, plasma with Zr-MOF, and plasma with Ru/Zr-MOF were measured, and the active species of C, H and CH for CO2 hydrogenation were detected. The plasma-assisted Ru/Zr-MOF exhibited high catalytic activity and stability in CO2 hydrogenation to methane, and it has great guiding significance for CO2 hydrogenation by using plasma and MOF materials.  相似文献   

18.
UV-pulsed laser cavity ringdown spectroscopy of the hydroxyl radical OH(A–X)(0–0)band in the wavelength range of 306–310 nm was employed to determine absolute number densities of OH in the atmospheric helium plasma jets generated by a 2.45 GHz microwave plasma source.The effect of the addition of molecular gases N_2 and O_2 to He plasma jets on OH generation was studied.Optical emission spectroscopy was simultaneously employed to monitor reactive plasma species.Stark broadening of the hydrogen Balmer emission line(H_β)was used to estimate the electron density nein the jets.For both He/N_2 and He/O_2 jets, newas estimated to be on the order of 10~(15)cm~(-3).The effects of plasma power and gas flow rate were also studied.With increase in N_2 and O_2 flow rates, netended to decrease.Gas temperature in the He/O_2 plasma jets was elevated compared to the temperatures in the pure He and He/N_2 plasma jets.The highest OH densities in the He/N_2 and He/O_2 plasma jets were determined to be 1.0?×10~(16)molecules/cm~3 at x?=?4 mm(from the jet orifice)and 1.8?×?10~(16)molecules/cm~3 at x=3 mm, respectively.Electron impact dissociation of water and water ion dissociative recombination were the dominant reaction pathways, respectively, for OH formation within the jet column and in the downstream and far downstream regions.The presence of strong emissions of the N_2~+ bands in both He/N_2 and He/O_2 plasma jets, as against the absence of the N_2~+ emissions in the Ar plasma jets, suggests that the Penning ionization process is a key reaction channel leading to the formation of N_2~+ in these He plasma jets.  相似文献   

19.
Efficient sterilization by a plasma photocatalytic system(PPS) requires strong synergy between plasma and photocatalyst to inactivate microorganisms while suppressing the formation of secondary pollutants.Here,we report that a PPS constructed from a needle array corona discharge and Au/TiO2 plasmonic nanocatalyst could remarkably improve the sterilization of Escherichia coli(E.coli) and alleviate formation of the discharge pollutant O3.At 6 kV,the combination of corona disc...  相似文献   

20.
In this paper, a long line-shape dielectric barrier discharge excited by a nanosecond pulse and AC is generated in atmospheric air for the purpose of discussing the uniformity, stability and ability of aramid fiber treatment. The discharge images, waveforms of current and voltage,optical emission spectra, and gas temperatures of both discharges are compared. It is found that nanosecond pulsed discharge has a more uniform discharge morphology, higher energy efficiency and lower gas temperature, which indicates that nanosecond pulsed discharge is more suitable for surface modification. To reduce the water contact angle from 96° to about 60°, the energy cost is only about 1/7 compared with AC discharge. Scanning electron microscopy,Fourier transform infrared spectroscopy and x-ray photoelectron spectroscopy are employed to understand the mechanisms of hydrophilicity improvement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号