首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The effects of particle size of microspheres on the drug release from a microsphere/sucrose acetate isobutyrate (SAIB) hybrid depot (m-SAIB) was investigated to develop a long-term sustained release drug delivery system with low burst release both in vitro and in vivo. A model drug, risperidone, was first encapsulated into PLGA microspheres with different particle sizes using conventional emulsification and membrane emulsification methods. The m-SAIB was prepared by dispersing the risperidone-microspheres in the SAIB depot. The drug release from m-SAIB was double controlled by the drug diffusion from the microspheres into SAIB matrix and the drug diffusion from the SAIB matrix into the medium. Large microspheres (18.95?±?18.88?µm) prepared by the conventional homogenization method exhibited porous interior structure, which contributed to the increased drug diffusion rate from microspheres into SAIB matrix. Consequently, m-SAIB containing such microspheres showed rapid initial drug release (Cmax?=?110.1?±54.2?ng/ml) and subsequent slow drug release (Cs(4–54d)=?2.7?±?0.8?ng/ml) in vivo. Small microspheres (5.91?±?2.24?µm) showed dense interior structure with a decreased drug diffusion rate from microspheres into SAIB matrix. The initial drug release from the corresponding m-SAIB was significantly decreased (Cmax?=?40.9?±?13.7?ng/ml), whereas the drug release rate from 4 to 54 d was increased (Cs(4–54d)=4.1?±?1.0?ng/ml). By further decreasing the size of microspheres to 3.38?±?0.70?µm, the drug diffusion surface area was increased, which subsequently increased the drug release from the m-SAIB. These results demonstrate that drug release from the m-SAIB can be tailored by varying the size of microspheres to reduce the in vivo burst release of SAIB system alone.  相似文献   

2.
The purpose of this study was to develop sustained release formulation of anastrozole-loaded chitosan microspheres for treatment of breast cancer. Chitosan microspheres cross-linked with two different cross-linking agents viz, tripolyphosphate (TPP) and glutaraldehyde (GA) were prepared using single emulsion (w/o) method. A reverse phase HPLC method was developed and used for quantification of drug in microspheres and rat plasma. Influence of cross-linking agents on the properties of chitosan microspheres was extensively investigated. Formulations were characterized for encapsulation efficiency (EE), compatibility of drug with excipients, particle size, surface morphology, swelling capacity, erosion and drug release profile in phosphate buffer pH 7.4. EE varied from 30.4 ± 1.2 to 69.2 ± 3.2% and mean particle size distribution ranged from 72.5 ± 0.5 to 157.9 ± 1.5 μm. SEM analysis revealed smooth and spherical nature of microspheres. TPP microspheres exhibited higher swelling capacity, percentage erosion and drug release compared to GA microspheres. Release of anastrozole (ANS) was rapid up to 4 h followed by slow release status. FTIR analysis revealed no chemical interaction between drug and polymer. DSC analysis indicated ANS trapped in the microspheres existed in amorphous form in polymer matrix. The highest correlation coefficients (R 2) were obtained for Higuchi model, suggesting a diffusion controlled mechanism. There was significant difference in the pharmacokinetic parameters (AUC0−∞, Kel and t1/2) when ANS was formulated in the form of microspheres compared to pure drug. This may be attributed to slow release rate of ANS from chitosan microspheres and was detectable in rat plasma up to 48 h which correlates well with the in vitro release data.  相似文献   

3.
Objective: This study was aimed to develop sustained drug release from levofloxacin (LF)-loaded chitosan (CS) microspheres for treating ophthalmic infections.

Significance: Dual cross-linked CS microspheres developed by the spray-drying technique displays significantly higher level of sustained drug release compared with non-cross-linked CS microspheres.

Methods: LF-loaded CS microspheres were prepared using the spray-drying technique, and then solidified with tripolyphosphate and glutaraldehyde as dual cross-linking agents. The microspheres were characterized by surface morphology, size distribution, zeta potential, encapsulation efficiency, and drug release profiles in vitro. The drug quantification was verified and analyzed by high-performance liquid chromatography (HPLC). The structural interactions of the CS with LF were studied with Fourier transform infrared spectroscopy. The effect of various influencing excipients in the formulation of the dual cross-linked CS microspheres on drug encapsulation efficiency and the drug release profiles were extensively investigated.

Result: The microspheres demonstrated high encapsulation efficiency (72.4?~?98.55%) and were uniformly spherical with wrinkled surface. The mean particle size was between 1020.7?±?101.9 and 2381.2?±?101.6?nm. All microspheres were positively charged (zeta potential ranged from 31.1?±?1.32 to 42.81?±?1.55?mV). The in vitro release profiles showed a sustained release of the drug and it was remarkably influenced by the cross-linking process.

Conclusion: This novel spray-drying technique we have developed is suitable for manufacturing LF-loaded CS microspheres, and thus could serve as a potential platform for sustained drug release for effective therapeutic application in ocular infections.  相似文献   


4.
Background: The aim of this study was to develop chitosan microspheres for nasal delivery of ondansetron hydrochloride (OND). Method: Microspheres were prepared with spray-drying method using glutaraldehyde as the crosslinking agent. Microspheres were characterized in terms of morphology, particle size, zeta potential, production yield, drug content, encapsulation efficiency, and in vitro drug release. Results: All microspheres were spherical in shape with smooth surface and positively charged. Microspheres had also high encapsulation efficiency and the suitable particle size for nasal administration. In vitro studies indicated that all crosslinked microspheres had a significant burst effect, and sustained drug release pattern was observed until 24 hours following burst drug release. Nasal absorption of OND from crosslinked chitosan microspheres was evaluated in rats, and pharmacokinetic parameters of OND calculated from nasal microsphere administration were compared with those of both nasal and parenteral administration of aqueous solutions of OND. In vivo data also supported that OND-loaded microspheres were also able to attain a sustained plasma profile and significantly larger area under the curve values with respect to nasal aqueous solution of OND. Conclusion: Based on in vitro and in vivo data, it could be concluded that crosslinked chitosan microspheres are considered as a nasal delivery system of OND.  相似文献   

5.
Insulin-loaded microspheres were prepared by alternating deposition film layers that were composed of insulin and poly(vinyl sulfate) potassium on the surface of poly(lactic acid) (PLA) microspheres. The preparation of the insulin-loaded microspheres was optimized by an orthogonal test design, and the relationship between drug loading (DL) and film layers was studied. The particle size, DL and encapsulation efficiency of the obtained insulin-loaded microspheres with 10 films were 5.25?±?0.15?µm, 111.33?±?1.15?mg/g and 33.7?±?0.19%, respectively. Following this, the physical characteristics of the insulin-loaded microspheres were investigated. The results from scanning electron microscopy and a laser particle size analyzer (LPSA) indicated the spherical morphology, rough surface and increasing particle sizes of the insulin-loaded microspheres, which were compared to those of PLA microspheres. An in vitro release study showed that the insulin-loaded microspheres were stable in HCl solution (pH 1.0) and released insulin slowly in phosphate-buffered solution (pH 6.8). Finally, the drug efficacy of the prepared insulin-loaded microspheres via oral administration was evaluated in rats with diabetes induced by streptozotocin, and an obvious dose-dependent hypoglycemic effect was observed. This preliminary data could illustrate the prospect of using microspheres for the oral delivery of insulin.  相似文献   

6.
This paper reports the fabrication of insulin-loaded mesoporous microspheres by a double emulsion-solvent evaporation technique using poly(lactic acid-co-glycolic acid) (PLGA) as carrier materials. PLGA solutions with two different concentrations (4% and 5%) were used as the oil phases to fabricate the mesoporous microspheres. The morphology and the particle size distribution of final microspheres were studied by optical microscope, scanning electronic microscope (SEM), and Malvern 2600 sizer, respectively. The mesoporous microspheres were monodisperse with an average diameter of 7 ± 3.5 µm. Insulin, as a model drug, was encapsulated into the final microspheres. In vitro release studies suggested that insulin was continuously released from the medicated microspheres. Furthermore, the final microspheres obtained from 4% PLGA solution showed a small “burst release” effect for their dense structures, which shortened the lag time to the effective plasma concentration. To summarize, the insulin-loaded PLGA microsphere are very promising for use in pharmaceutical applications.  相似文献   

7.
The aim of the present work was to prepare floating microspheres of atenolol as prolonged release multiparticulate system and evaluate it using novel multi-compartment dissolution apparatus. Atenolol loaded floating microspheres were prepared by emulsion solvent evaporation method using 32 full factorial design. Formulations F1 to F9 were prepared using two independent variables (polymer ratio and % polyvinyl alcohol) and evaluated for dependent variables (particle size, percentage drug entrapment efficiency and percentage buoyancy). The formulation(F8) with particle size of 329?±?2.69 µm, percentage entrapment efficiency of 61.33% and percentage buoyancy of 96.33% for 12?h was the of optimized formulation (F8). The results of factorial design revealed that the independent variables significantly affected the particle size, percentage drug entrapment efficiency and percentage buoyancy of the microspheres. In vitro drug release study revealed zero order release from F8 (98.33% in 12?h). SEM revealed the hollow cavity and smooth surface of the hollow microspheres.  相似文献   

8.
Pregabalin is an anticonvulsant drug used for neuropathic pain and as an adjunct therapy for partial seizures with or without secondary generalization in adults. In conventional therapy recommended dose for pregabalin is 75?mg twice daily or 50?mg three times a day, with maximum dosage of 600?mg/d. To achieve maximum therapeutic effect with a low risk of adverse effects and to reduce often drug dosing, modified release preparations; such as microspheres might be helpful. However, most of the microencapsulation techniques have been used for lipophilic drugs, since hydrophilic drugs like pregabalin, showed low-loading efficiency and rapid dissolution of compounds into the aqueous continous phase. The purpose of this study was to improve loading efficiency of a water-soluble drug and modulate release profiles, and to test the efficiency of the prepared microspheres with the help of animal modeling studies. Pregabalin is a water soluble drug, and it was encapsulated within anionic acrylic resin (Eudragit S 100) microspheres by water in oil in oil (w/o/o) double emulsion solvent diffusion method. Dichloromethane and corn oil were chosen primary and secondary oil phases, respectively. The presence of internal water phase was necessary to form stable emulsion droplets and it accelerated the hardening of microspheres. Tween 80 and Span 80 were used as surfactants to stabilize the water and corn oil phases, respectively. The optimum concentration of Tween 80 was 0.25% (v/v) and Span 80 was 0.02% (v/v). The volume of the continous phase was affected the size of the microspheres. As the volume of the continous phase increased, the size of microspheres decreased. All microsphere formulations were evaluated with the help of in vitro characterization parameters. Microsphere formulations (P1–P5) exhibited entrapment efficiency ranged between 57.00?±?0.72 and 69.70?±?0.49%; yield ranged between 80.95?±?1.21 and 93.05?±?1.42%; and mean particle size were between 136.09?±?2.57 and 279.09?±?1.97?µm. Pregabalin microspheres having better results among all formulations (Table 3) were chosen for further studies such as differential scanning calorimetry, Fourier transform infrared analysis and dissolution studies. In the last step, the best pregabalin microsphere formulation (P3) was chosen for in vivo animal studies. The pregabalin-loaded microspheres (P3) and conventional pregabalin capsules were applied orally in rats for three days, resulted in clinical improvement of cold allodynia, an indicator of peripheral neuropathy. This result when evaluated together with the serum pregabalin levels and in vitro release studies suggests that the pregabalin microspheres prepared with w/o/o double emulsion solvent diffusion method can be an alternative form for neuropathic pain therapy. Conclusively, a drug delivery system successfully developed that showed modified release up to 10?h and could be potentially useful to overcome the frequent dosing problems associated with pregabalin conventional dosage form.  相似文献   

9.
Abstract

To minimize unwanted toxic effects of valproic acid (1) by the kinetic control of drug release, gastroresistant carnauba wax microspheres loaded with the antiepileptic agent were prepared. The preparation was based on a technique involving melting and dispersion of drug-containing wax in an aqueous medium. The resulting emulsion after cooling under rapid stirring produced solid, discrete, reproducible free flowing microspheres which converted the liquid drug droplets into solid material. About 94% of the isolated microspheres were of particle size range 200-425 μm. The microspheres were analyzed to determine the drug content in various particle size range and to characterize the in vitro release profile. The average drug content was 26% w/w. The intestinal drug discharge of 1 from the carnauba wax microspheres was studied and compared with the release patterns observed for white beeswax and hexadecanol microspheres previously described. The drug release performance was greatly affected by the material used in the microencapsulation process. In the intestinal environment carnauba wax microspheres exhibited more rapid initial rate of release and about 80% of the entrapped drug was discharged in 120 min while complete release occurred in about 8 h.  相似文献   

10.
Objective: The present study discusses paclitaxel (PTX)-loaded mannosylated-DSPE (Distearoyl-phosphatidyl-ethanolamine) solid lipid nanoparticles (M-SLNs) using mannose as a lectin receptor ligand conjugate for lung cancer targeting and to increase the anticancer activity of PTX against A549 lung’s epithelial cancer cells.

Materials and methods: The PTX-SLNs were prepared by solvent injection method and mannose was conjugated to the free amine group of stearylamine. The M-SLNs obtained were characterized for their particle size, polydispersity index, zeta potential and morphology by transmission electron microscope.

Results: The M-SLNs were spherical in shape with 254?±?2.3?nm average size, positive zeta potential (3.27?mV), 79.4?±?1.6 drug entrapment efficiency and showed the lower extent of drug release 40% over 48?h in vitro. Cytotoxicity study on A549 cell lines and biodistrubtion study of drug revealed that M-SLNs deliver a higher concentration of PTX as compared to PTX-SLNs in an alveolar cell site.

Discussion and conclusion: These results suggested that mannosylated M-SLNs are safe and potential vector for lung cancer targeting.  相似文献   

11.
Resorbable ceramics such as biphasic calcium phosphates (BCP) are ideal candidates as drug delivery systems. The BCP ceramic is based on the optimum balance of the most stable hydroxyapatite (HA) phase and more soluble tricalcium phosphate phase (TCP). Doxycycline is a broad-spectrum antibiotic used for the local treatment of periodontitis. The development of BCP microspheres and its release kinetics with doxycycline have been studied. The BCP ceramic powder were prepared by microwave processing and characterised by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) methods. The BCP microspheres were formed by liquid immiscibility effect using gelatin and paraffin oil. Difference in the morphology of the microspheres as a function of gelatin content has been observed. Scanning electron microscope indicated spherical and porous morphology of the microspheres. Drug incorporation was studied at varying pH and the pH 7 was found to be optimal for drug loading. Release pattern tend to depend on the morphology of BCP microspheres. An optimum release of 80% drug has been observed for BCP microsphere with HA:TCP = 65:35 ratio. The surface area measurement results also correlate with drug release obtained.  相似文献   

12.
Background: Developing a sustained release drug to cure arthritis is needed. Sinomenine (SIN) is abstracted from sinomenium acutum and widely used in the treatment of various rheumatism and arrhythmia with few side effects. The primary aim of this study is to develop SIN microcapsules with polyelectrolyte multilayers for controlled drug release. Method: SIN microcrystals were encapsulated with chitosan, gelatin, and alginate by layer-by-layer technique, such as (gelatin/alginate)4 and (chitosan/alginate)6. The size distribution, zeta-potential, stability, and morphology of the microcapsules were characterized by a particle size analyzer, zetasizer, ultraviolet spectroscopy, and transmission electron microscope, respectively. The in vitro controlled release pattern of SIN was studied using a diffusion cell assembly at physiological pH of 6.8 or 1.4. Results: Light stability of these microcapsules was improved after microencapsulation. Compared with release rate of the SIN microcapsules coated by the poly(dimethyldiallyl ammonium chloride)/alginate and gelatin/alginate multilayers, release rate of the SIN microcapsules coated with chitosan/alginate multilayers was fast. Release rate progressively decreased with the increase of chitosan/alginate bilayer number and the decrease of pH value of release medium. Conclusion: These novel SIN microcapsules may be developed into oral controlled drug delivery for rheumatism and arthritis.  相似文献   

13.
The aim of the present study was to extend the use of flurbiprofen in clinical settings by avoiding its harmful gastric effects. For this purpose, we designed the controlled release solid lipid flurbiprofen microspheres (SLFM) by emulsion congealing technique. Drug was entrapped into gastro resistant biodegradable beeswax microspheres which were prepared at different drug/beeswax ratios 1:1, 1:2 and 1:3 using gelatin and tween 20 as emulsifying agents. The effect of emulsifiers and the effect drug/beeswax ratios were studied on hydration rate, encapsulating efficiency, micromeritic properties, scanning electron microscopy (SEM), fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), X-ray diffraction (X-RD) analysis and in vitro drug release at pH 1.2 for 2 h and at pH 6.8 for 10 h. SEM revealed that microspheres made with tween 20 were smooth while microspheres made with gelatin showed porous morphology, however, they were all spherical in nature. The practical yield (recovery) showed a dependence on drug-beeswax ratio and it was variable from 53 to 84%. High loading encapsulating efficiency of flurbiprofen from 8 to 94% was achieved. FTIR and DSC analysis confirmed the absence of any drug polymer interaction indicating drug stability during microencapsulation. X-RD of pure flurbiprofen shows sharp peaks, which decreases on encapsulation, indicating decrease in the crystallinity of drug in microspheres. The micromeritic studies confirmed the presence of excellent and good flow properties of microspheres. Entrapment efficiency, morphology, practical yield, hydration rate, flow properties demonstrated their dependence on the HLB value of emulsifiers and emulsifiers with higher HLB were found more appropriate for effective microencapsulation of flurbiprofen. The release kinetics followed zero order mechanism of drug release at pH 6.8. Release pattern depends on the morphology of flurbiprofen microspheres and amount of beeswax used in the microspheres preparation. The microspheres prepared with high HLB values i.e., tween 20 showed effective control of drug release from microspheres. The absence of drug release at pH 1.2 proved the suitability of beeswax for its use as a gastro resistant material.  相似文献   

14.
Objective: To develop a novel efficient nanoparticulate carrier loaded with basic fibroblast growth factor (bFGF). Methods: Gelatin and glycidyl methacrylate-derivatized dextran (dex-GMA) were cross-linked and polymerized to form interpenetrating polymeric networks. The properties of the nanoparticles (NPs) were investigated as a function of the degree of dex-GMA substitution and the concentration of gelatin used in the preparation of the hydrogels. The morphology was observed with scanning eletromicroscopy and transmission eletromicroscopy. The swelling, degradation, and entrapment efficiency were also determined by dynamic evaluation methods in vitro. The protein release ratio and in vitro release kinetics were evaluated by routine procedure, and the biological activity of bFGF-loaded NPs was studied by cell proliferation assay, cell attachment, and cell function. Results: The NPs have a particle size of 320 ± 20 nm. bFGF was entrapped in the nanoparticles quantitatively (the encapsulation efficiency, 89.6 ± 0.9%). The bFGF in vitro release kinetics fitted to zero-order and Higuchi equations. Proliferation assay, attachment assay, and western blot showed that bFGF NPs had good biological effects on cultured bone marrow mesenchymal stem cells and could achieve a much longer action time than bFGF solution. Conclusion: These results suggested that a novel biodegradable dex-GMA/gelatin hydrogel NPs loaded with bFGF could be successfully developed from both dextran- and gelatin-based biomaterials.  相似文献   

15.
Drug which shows extensive first pass effect is difficult task that, needs to be solved by formulators in the pharmaceutical science. The low oral bioavailability (49%) of flutamide may be due to poor wettability, low aqueous solubility and extensive first pass effect. The aim of present investigation was to prepare flutamide loaded microspheres and incorporate it into suppositories for rectal delivery to avoid first pass effect and enhance residence time. Flutamide loaded mucoadhesive microspheres of Ocimum Basilicum mucilage (OBM) were prepared using spray drying and characterized by percent production yield, encapsulation efficiency, particle size, zeta potential, polydispersity index, DSC, SEM, XRPD, in vitro drug release and stability studies. Moreover, ex vivo mucoadhesion was investigated using falling liquid film technique to determine the adhesion of microspheres to sheep rectal mucosa. The microspheres had nearly spherical shape and size about 2.53?μm. The encapsulation efficiency and mucoadhesion of optimized formulation MBF10 were found to be 69.6?±?2.3% and 89.01?±?2.18%, respectively. Percent CDR of optimized flutamide loaded mucoadhesive microspheres was found to be 88.7?±?1.3 at 7?h. In conclusion, OBM microparticles based suppository could be used to deliver drug through rectal delivery.  相似文献   

16.
Background: Various approaches have been used to retain the dosage form in stomach as a way of increasing the gastric residence time, including floatation systems; high-density systems; mucoadhesive systems; magnetic systems; unfoldable, extensible, or swellable systems; and superporous hydrogel systems. Aim?: The objective of this study was to prepare and evaluate floating microspheres of rosiglitazone maleate for the prolongation of gastric residence time. Method: The microspheres were prepared by solvent diffusion–evaporation method using ethyl cellulose and hydroxypropylmethylcellulose. A full factorial design was applied to optimize the formulation. Results: Preliminary studies revealed that the polymer:drug ratio, concentration of polymer, and stirring speed significantly affected the characteristics of microspheres. The optimum batch exhibited a prolonged drug release, remained buoyant for >12 hours, high entrapment efficiency, and particle size in the order of 350 μm. Conclusion: The results of 32 full factorial design revealed that the concentration of ethylcellulose 7 cps (X1) and stirring speed (X2) significantly affected drug entrapment efficiency, percentage release after 8 h and particle size of microspheres.  相似文献   

17.
采用乳化交联法制备出粒径主要分布在100~300 μm的载药明胶微球, 分析了交联剂含量、药物含量和转速对载药率和包封率的影响及药物含量和转速对微球粒径的影响。对载药明胶微球与磷酸镁基骨水泥进行复合, 探讨微球降解过程中复合体系孔隙率的变化及其在体外药物释放的规律, 以期获得一种具有药物缓释性能的多孔磷酸镁基复合骨水泥。结果表明, 随着葡萄糖浓度增加, 载药率和包封率先上升再下降; 随着药物含量的增加, 载药率保持上升, 包封率先上升后下降; 随着转速增加, 载药率和包封率均下降。综合分析, 在转速为400 r/min、葡萄糖浓度为0.5 g/mL、药物与明胶质量比为1:2的条件下制备的载药明胶微球载药量较高, 且粒径合适。将复合不同比例该载药微球的磷酸镁基骨水泥浸泡在Tris-HCl缓冲溶液中进行体外药物释放研究, 结果表明: 在释放前期(0~10 h)药物释放速率较快, 之后药物释放明显减缓。7 d后, 微球几乎降解完全, 药物释放率达到60%~89%, 达到了一定的药物缓释效果。  相似文献   

18.
Objective: The objective of this study was to fabricate double-walled poly(lactide-co-glycolide) (PLGA) microspheres to increase encapsulation efficiency and avoid rapid release of hydrophilic drugs such as meglumine antimoniate.

Methods: In this study, double-walled and one-layered microspheres of PLGA were prepared using the emulsion solvent evaporation technique to better control the release of a hydrophilic drug, meglumine antimoniate (Glucantime®), which is the first choice treatment of cutaneous leishmaniasis. The effect of hydrophobic coating on microspheres' size, morphology, encapsulation efficiency and drug release characteristics was evaluated. Furthermore, the presence of antimony in meglumine antimoniate made it possible to observe the drug distribution within the microspheres' cross section by means of energy dispersive X-ray spectroscopy.

Results: Drug distribution images confirmed accumulation of the drug within the inner core of double-walled microspheres. In addition, these microspheres encapsulated the drug more efficiently up to 87% and demonstrated reduced initial burst and prolonged release compared to one-layered microspheres. These superiorities make double-walled microspheres an optimum candidate for sustained delivery of hydrophilic drugs.

Conclusion: Double-walled microspheres provide some advantages over traditional microspheres overcoming most of their limitations. Double-walled microspheres were found to be more efficient than their corresponding one-layered microspheres in terms of encapsulation efficiencies and release characteristics.  相似文献   


19.
Aim: The current communication deals with the development of hollow floating beads of gliclazide. The primary effect of this drug is to potentiate glucose-stimulated insulin release from pancreatic islet-β-cells by induction of a decrease in potassium efflux from these cells. Because of the poor aqueous solubility, its absorption is limited. Thus, an attempt was made to improve its release profile.

Methods: The hollow drug-loaded alginate beads in combination with low methoxyl pectin and hydroxypropylmethylcellulose (HPMC) were prepared by a simple ionotropic gelation method. The beads were evaluated for particle size and morphology using optical microscopy and scanning electron microscopy (SEM), respectively. Mucoadhesion test was done using goat stomach mucosal membrane. Release characteristics of the gliclazide-loaded hollow beads were studied in 0.1?N HCl (pH 1.2) and phosphate buffer (pH 5.8).

Results: The developed beads were spherical in shape with hollow internal structure and had a particle size in the range of 0.730?±?0.05 to 0.890?±?0.03?mm. The incorporation efficiency of alginate -pectin beads was higher than alginate -HPMC beads. The Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC) and X-ray diffraction analysis showed stable character of drug in the drug-loaded hollow beads and revealed the absence of any drug -polymer interactions. The beads remained buoyant for more than 12?h. The drug release from beads followed Fickian diffusion with swelling.

Conclusion: The preliminary results of this study suggest that the developed beads containing gliclazide could enhance drug entrapment efficiency, reduce the initial burst release and modulate the drug release.  相似文献   

20.
Metformin hydrochloride (MH), a biguanide antidiabetic, is the drug of choice in obese patients. It is well absorbed from the upper part of gastrointestinal tract and has oral bioavailability of 50% to 60%. The objective of this study was to formulate MH into floating microspheres in order to increase its residence time at the site of absorption and thus improve its bioavailability; and to extend the duration of action along with possibilities of dose reduction. Microspheres were prepared by emulsion solvent evaporation method and evaluated for particle size, entrapment efficiency, buoyancy, and in vitro release; and further characterized by powder X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and differential scanning calorimetry. The pharmacokinetic and pharmacodynamic evaluation of selected formulation was carried out in male Wistar diabetic rats. The data was statistically analyzed by unpaired t-test. A 3.5-fold increase in relative bioavailability was observed. The prolongation of half-life (t1/2) from 4.5 ± 2.41 h to 14.12 ± 4.81 h indicated extended duration of action. Oral glucose tolerance test (OGTT) was analyzed by one-way analysis of variance followed by Dunnet multiple comparison test, a significant decrease (p < 0.05) in the blood glucose levels was observed when formulations were compared with control rats. Hence, MH floating microspheres were tested at 50 mg/kg and 100 mg/kg body weight, OGTT data showed nonsignificant difference (p >0.05). In conclusion, an effective oral antidiabetics treatment can be achieved by formulating MH into floating microspheres which results in increase in bioavailability along with extended duration of action resulting in possible reduction in dose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号