首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
吴琦琪  乔玮  苏韧 《科学通报》2019,64(32):前插6,3309-3326
光催化技术由于其简单、有效和环保等特点,在能源、环境及化学合成领域受到广泛关注.近年来,随着原位表征技术的飞速发展,学术界对光催化过程的理解逐步加深,并提出了多种理性设计光催化剂的策略.此外,物理、化学、材料、医学等学科的高度交叉进一步推动了光催化技术的应用前景.本文总结了近年光催化技术机理方面的深度认识及光催化技术在能源、环境及有机合成领域的研究进展,包括光解水制氢、小分子活化等能源领域的研究,以及选择性氧化还原、偶联、氘代化等有机合成领域的研究;还分析总结了光催化技术在应用领域亟需解决的关键问题.  相似文献   

2.
正高效低成本大规模太阳能光催化分解水制氢是人类解决能源与环境问题最有前景的途径.其关键是寻找能够低成本大规模制备、具有合适能带结构的高活性光催化剂材料与高效产氢产氧助催化剂,以构建高效的光催化反应体系.非金属聚合物半导体石墨型氮化碳(g-C_3N_4)具有很好的光化学稳定性、  相似文献   

3.
为了缓解并最终解决能源问题,自20世纪至今,人们一直在探索如何利用光能如太阳光高效环保地将水分解生成清洁能源氢气,以及利用光能实现人工二氧化碳的还原过程(模拟光合作用).金属-有机框架(metalorganic frameworks,MOFs)具有独特的物理和化学性质,如超高的比表面积、可设计和精确控制的孔洞、对光生电子的多种传递机制、方便与染料分子连接、或是可直接引入具有优异光学活性的配体和金属.作为一大类近二十年来迅速发展的微孔/介孔材料,在光催化领域引起了越来越多研究者的兴趣.本文通过一些代表性的实例总结了MOFs作为新兴光催化材料的独特优势和内在优点,展望了MOFs在光催化应用中的机遇和发展前景.首先介绍了MOFs的基本概念和特性,阐述了相对于其他材料而言,MOFs的独特优势,并解释了为何它能在光催化领域引起广泛的关注;之后将用于光催化的MOFs分成3大类,分别是:(1)依靠无机金属簇作为半导体结点的MOFs;(2)引入具有光活性的有机连接体(即配体)的MOFs;(3)以及利用超分子化学中主-客体相互作用,在孔洞中包覆氧化还原物种的MOFs,其中又细分为包覆纳米粒子或者金属催化剂、多金属含氧酸盐和其他纳米复合材料3个小类;最后,总结了MOFs在光催化中应用时仍需解决的问题,展望了该领域的研究方向.  相似文献   

4.
李景虹 《科学通报》2019,64(31):3151-3152
<正>随着人类不断消耗化石燃料等不可再生能源,产生的"温室效应"和污染等问题受到社会各界的广泛关注.光催化还原CO_2可以获得碳氢化合物,这一反应既可减排CO_2等温室气体,又可将其转化为碳氢化合物,实现资源的再利用,从而缓解能源问题,实现人工碳循环.目前,光催化还原CO_2的研究面临着转化率不高、产物多、选择  相似文献   

5.
TiO2光催化-膜分离耦合技术在水处理中的应用研究进展   总被引:3,自引:0,他引:3  
光催化-膜分离耦合工艺是目前水处理研究新热点之一. 光催化技术和膜分离技术的耦合既能解决光催化技术中光催化剂回收难的问题, 又能解决或者缓解制约膜分离工艺发展的膜污染问题; 二者的耦合过程还能产生一系列的协同作用, 从而大大提高水处理的效率. 介绍了TiO2光催化-膜分离耦合工艺常见的3种应用形式, 阐述了各自的工艺原理和特点, 并对影响光催化-膜分离耦合工艺的主要参数做一概述; 最后针对目前存在的问题对今后的发展提出展望.  相似文献   

6.
半导体光催化分解水制氢是一种装置简单,相对廉价可靠的能源利用方式.开发具有高光制氢效率的光电极材料一直是材料科学研究领域的热点.目前的半导体光催化材料普遍面临缺乏可见光吸收和载流子分离效率低的问题.这些问题导致目前光解水制氢电极材料的效率较低,达不到商业应用的要求.因此,发展改性的光电极材料尤为重要.离子注入技术作为一种重要的半导体改性技术,相对于传统的化学掺杂方法具有诸多优点.离子注入方法能够保证注入离子的纯度,能够通过控制注入离子的能量和剂量从而控制注入杂质的浓度和深度分布.离子注入技术可以使掺杂不受扩散系数和化学结合力等因素的限制,各种元素均可掺杂.因此,离子注入技术在光电极材料改性方面具有很大的应用前景.本文首先介绍了光解水制氢及离子注入技术的基本原理,然后结合本课题组及其他学者的工作,综述了目前离子注入技术改性光电极材料的特点和研究进展,最后展望了离子注入技术在光解水电极改性应用的未来发展方向.  相似文献   

7.
多年来,科学家们一直在从事太阳能分解水制氢的研究。希望能以此产生无限数量的、廉价的、干净的、可再生的氢气,以解决世界的能源问题,同时也有利于环境保护。目前在这方面开展的研究有:光电解水制氢;光化学分解水制氢;生物化学分解水制氢(即光合作用制氢)等。  相似文献   

8.
《科学通报》2021,66(25):3299-3308
利用太阳能光解水生成氢气一直是光催化领域的研究热点之一.在过去的几十年,利用二氧化钛来实现光催化分解水产氢被广泛研究.但是,由于体系的复杂性,水在二氧化钛表面的光解离反应机制至今仍有很多基本问题尚未得到解释.因此,从微观层面上理解水在二氧化钛表面的光解离机制对于能源化学和光催化而言均具有重要意义.本文系统综述了水在二氧化钛单晶表面光解离机理的最新研究进展,分析了影响光催化水解离效率的因素(如表面结构、分子间氢键、光子能量等),并对光催化模型进行了开放性讨论,指出了电荷/能量转移以及电荷载体与吸附质的相互作用在水光解离过程中扮演的关键作用,希望能为开发更高效的光催化剂提供线索.  相似文献   

9.
李倩菀  刘彪  敖志敏 《科学通报》2022,(10):976-985
燃料燃烧、交通运输、化工生产等过程产生的挥发性有机污染物(volatile organic compounds,VOCs)是导致城市灰霾和光化学烟雾的重要物质.多相光催化反应因条件温和、直接利用太阳光驱动等优点而成为一种理想的VOCs降解技术.本研究采用密度泛函理论,计算掺杂非金属硫原子的单层多孔石墨烯(porous graphene,PG)的光催化性能,包括能带结构、能带边缘位置、分波态密度和前线轨道(highest occupied molecular orbital-lowest unoccupied molecular orbital,HOMO-LUMO)以及它的光学吸收谱,对O2、H2O和VOCs分子的吸附性能等,以探讨光催化降解VOCs的可能性.掺杂硫原子后,PG材料能带的带隙大幅降低,对O2分子的吸附能显著提高,结合能带边缘位置的结果,表明PG材料能产生更多的光生电子,并且提高了产生超氧自由基的能力.对比原始PG材料,硫掺杂PG(S-doped PG)材料的光学响应向红外区偏移,光吸收波长阈值增大,表明硫原...  相似文献   

10.
随着化石资源的枯竭和环境污染的加剧,人类对绿色可再生能源的需求与日俱增.开发新型绿色能源是缓解能源危机的有效方法之一.水作为一种丰富的可再生资源,能够通过流动、蒸发、扩散等运动实现能量转换.水分子在地球表面的主要存在形式包括固态、液态和气态3种.为有效利用水资源,已制造出水力发电、潮汐能发电等使用液态水的大型设备.近年来,水分子与功能材料间的水伏效应掀起了对湿气发电的研究热潮.湿气发电机能够利用环境中的湿气能量产生电能,其过程主要包括电荷有效分离和载流子不对称运动.湿气发电机具有体积小、易制备、易集成等优点,能够从人体日常生理活动(如呼吸、出汗等)中收集能量并转化为电能,在便携式柔性电源和自供能传感器等领域具有巨大的应用潜力.本文总结了湿气发电机的基本原理、材料和结构设计方法及典型应用,并对湿气发电机的发展趋势进行了展望.  相似文献   

11.
封面说明     
正低浓度NO是环境大气中的主要污染物之一,是产生PM2.5的重要前驱体.传统的热催化、吸附和吸收等技术不适用于低浓度NO的净化.等离子体光催化是一种净化NO的绿色技术,具有广泛的应用前景.但等离子体光催化净化NO的反应机理受到研究手段的限制未能充分揭示.为了从分子层面理解该反应机理这一关键科学问题,董帆课题组运用装载了光催化反应仓的原位红外光谱,模拟并动态监测了在可见光照射下,Ag/  相似文献   

12.
地球上的能源——煤炭、石油、天然气等正在惊人地消耗着,发达国家对能源的需求量日益增长,解决能源危机是当今世界上重要的问题.太阳能的利用便是解决能源危机的一种途径. 太阳能龟池是利用半导体材料的光生伏特效应把太阳能直接转换成电能的一种半导体器件.制造太阳能电池的半导体材料,传统的是用无机材料,如硅、硫化镉、砷化镓等.用这些材料制造的器件,其工艺复杂、成本昂贵.目前,为了提高转换效率及降低成本,开展着极为广泛的研究探索工作.据“第五  相似文献   

13.
可见光诱导TiO2光催化的研究进展   总被引:14,自引:0,他引:14  
TiO2具有稳定性好、光效率高和不产生二次污染等特点,被认为是最有应用前景的光催化剂.通过金属及非金属掺杂改性的方法可以将只能UV光激发的TiO2光催化反应红移到可见光区域进行,也可以利用表面络合或染料敏化的途径实现可见光光催化反应.本文介绍了国内外在可见光TiO2光催化研究方面的最新进展.  相似文献   

14.
随着石墨烯及其优异性质被发现以来,二维层状材料成为了材料科学领域研究的热点.二维层状材料每个片层内的原子通过化学键连接,片层间以弱范德华力相互堆垛.这种几何结构使得二维层状材料在晶格不匹配和生长方法不兼容的情况下,彼此之间仍然能够相互混合和匹配,从而衍生出很多范德华层间异质结构.这种异质结构利用了不同堆垛材料迥异的物理和化学性质,在电子、光电子器件、可再生能源储存和转化等领域得到了广泛的应用.需要指出的是,大面积、大畴区、可控制备本征层间异质结构是实现其实际应用的首要条件.本文总结了基于过渡金属硫属化合物(MX_2)和石墨烯(graphene)层间异质结构的最新研究成果,重点描述了MX_2/graphene和MX_2/MX_2层间异质结构的化学气相沉积(CVD)可控制备、新奇物理性质探索以及这两类异质结构在能源领域(电/光催化析氢反应)中的应用,并讨论了所存在的问题和未来发展方向.  相似文献   

15.
光催化技术可以直接利用低能量密度的太阳光驱动化学反应,实现用太阳能-高密度化学能直接转化来生产清洁能源和工业原料,也可以驱动污染物和有毒物质降解来治理环境污染,具有巨大的应用潜力。尽管光催化材料的研究开发已有越来越多的报道,但在催化活性、选择性、稳定性等方面还远不能满足大规模应用的要求。近年来,在众多被报道的光催化剂中,二维半导体材料表现出优异的催化性能和应用潜力,文章系统性总结了二维半导体光催化材料的研究现状,并对未来的研究方向进行了展望。  相似文献   

16.
矿物复合材料是近些年来发展起来的材料科学分支学科,是与地质学领域的矿物岩石学融合创新的交叉领域.它既具有矿物所具备的特定功能和属性,又包含复合材料的鲜明特征,在生态环境、新能源、大健康等领域具有广阔应用前景,并符合“碳达峰、碳中和”的战略需求.随着人类对能源可持续性的探索,与能源相关的材料已然成为材料研究领域的热点,其中,具有来源丰富、低成本的矿物复合材料在能源和催化领域日益受到重视.欲实现矿物复合材料在能量存储和能源催化等领域的应用,仍待取得更多突破并亟待进一步研究与探讨.本文从矿物复合材料的概念和学科分支的形成出发,首先梳理了矿物复合材料的发展历程,初步定义了矿物复合材料的分类,归纳了常见矿物复合材料中矿物组分在能量存储和能源催化应用中的作用;介绍了矿物复合材料在能量存储领域的应用,包括压电自发电、超级电容器、二次电池等;总结了矿物复合材料在能源催化领域的应用,涵盖了以光催化/电催化析氢反应、热释电催化和压电催化为主的应用.最后,对矿物复合材料未来可能面临的科学问题和发展方向作出了展望.  相似文献   

17.
能源问题是目前全世界范围面临的最为突出的问题之一,而太阳能是人类取之不尽、用之不竭的清洁能源.如今太阳能材料的研制和应用已取得显著进步.理想的新型太阳能功能材料不但能够解决世界面临的能源短缺问题,而且还可以避免环境的污染.所以太阳能材料具有十分诱人的前景,并且可以预见在不久的将来,太阳能材料将在人类生活中扮演极为重要的角色.新型太阳能功能材料的研制和太阳能器件的产业化,将会使人类在能源利用和环境保护两方面达到和谐的境界.  相似文献   

18.
胡明 《科学通报》1986,31(3):194-194
为解决能源问题,当前利用日光分解水放氢的研究十分活跃。已经证明,光敏化还原甲基紫精得到的正离子自由基(MV~(?)),经胶态铂或氢化酶催化能够还原水产生氢气。  相似文献   

19.
《科学通报》2021,66(30):3822-3838
半导体光催化剂是解决环境污染和能源危机的有效途径之一.石墨相氮化碳(g-C_3N_4)作为一种新兴的高效催化剂,具有较好的稳定性,在光催化技术中展现出巨大的工程应用潜力.然而,未经改性的g-C_3N_4可见光响应范围有限,并且光激发电荷载流子复合速率高,从而导致光催化活性较低.通过向g-C_3N_4中引入缺陷,可以扩展光响应区域,并作为电子空穴激发的活性中心,提高光催化性能.本文在实验和理论研究进展的基础上,系统地综述了缺陷g-C_3N_4的合成方法、缺陷位点对g-C_3N_4的影响以及其在水处理中的应用,如抗生素、有机农药的降解及降低重金属毒性等处理方面,还有在水分解、二氧化碳转化及光催化脱氮上的应用.最后,针对缺陷g-C_3N_4应用所面临的挑战,本文从机理探索和材料开发两方面提出了展望.  相似文献   

20.
受控核聚变研究的进展和展望   总被引:1,自引:0,他引:1       下载免费PDF全文
丁厚昌  黄锦华 《自然杂志》2006,28(3):143-149
核能包括重核裂变和轻核聚变所释放的能量。核裂变会产生长寿命放射性废物,由于公众的反对意见,它的发展受到了一定阻碍。核聚变能是取之不尽,用之不竭的能源。如果实现以氘为燃料的受控核聚变,则可获取2×10~(11)TW·a的核聚变能,若以每年20TW·a速度消费,则可以使用100亿年。如以氘-氚为燃料,也够使用3000万年。所以受控热核聚变一旦实现,世界能源问题就一劳永逸地解决了。它是相当安全的能源。燃烧等离子体一旦建立,任何运行事故都能使等离子体迅速冷却,从而使核聚变堆在短时间内熄灭。在等离子体中的储能非常低:小于1 GJ。它是相当清洁的能源,不产生化石燃料电站所释放的二氧化碳和氧化氮之类的燃烧产物,也不产生长寿命高放射性废物——锕系元素和裂变产物。氚具有放射性,但它的半衰期非常短,仅为12.3年。因此,从长远看,发展核聚变能源对我国乃至全球解决能源问题都是至关重要的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号