首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
以某型号车用增压器涡轮叶轮为研究对象,采用快速成型技术加工了蜡模,浇铸了减重优化的涡轮叶轮,在增压器试验台架上对三台增压器进行了超速破坏试验和整机性能试验,以及转子高速动平衡试验。试验结果表明,减重优化厚度涡轮叶轮满足强度要求,转子的第二阶临界转速降低,但增压器工作转速仍介于二阶和三阶临界转速之间,减重涡轮对增压器效率几乎没有影响。  相似文献   

2.
涡轮增压器在工作时,高温废气会把大量的热量传递给涡轮叶轮,并通过转轴传递给压气机叶轮。由于压气机叶轮处于常温环境中,受到高温加热的涡轮增压器转子会产生较大的温度梯度。根据涡轮增压器转子的实际结构和工作条件,建立了考虑温度场作用的转子动力学分析模型,对不同工况下涡轮增压器转子动力学特性进行研究和实验验证,揭示了温度场对涡轮增压器转子临界转速和稳定极限转速的影响规律,并根据计算结果对转子结构进行优化。结果表明:温度场使转子一阶临界转速增大,二、三、四阶临界转速降低,使稳定极限转速的阈值降低。从温度场作用方面出发,对高温环境下涡轮增压器转子系统动力学特性进行准确分析及结构改进,对于提高我国涡轮增压器的设计研究水平具有一定的参考意义和工程实践价值。  相似文献   

3.
为研究流线隧道式涡轮对涡轮增压器转子动力学特性的影响,将某型号车用涡轮增压器叶片式涡轮替换为流线隧道式涡轮,建立了密封流体激振、叶尖间隙激振和隧道涡轮轮缘间隙激振耦合条件下的转子系统模型,计算分析了涡轮材料和轮缘间隙对转子临界转速、稳态响应以及瞬态响应的影响。结果表明,K418高温合金隧道涡轮转子一阶临界转速大幅降低,稳态响应稳定性较好,但瞬态响应振动剧烈、失稳,表明隧道涡轮采用K418高温合金需要调整结构设计;SiC陶瓷隧道涡轮转子一阶临界转速下降、稳态响应振幅增加,但对转子稳定性影响不大,二阶临界转速有微小增加,稳态响应振幅下降,瞬态响应稳定性较佳。  相似文献   

4.
车用涡轮增压器叶轮破裂转速的弹塑性数值分析   总被引:4,自引:1,他引:3  
基于ANSYS有限元分析软件,对车用涡轮增压器涡轮叶轮和压气机叶轮进行了材料非线性弹塑性有限元数值分析,计算了涡轮叶轮和压气机叶轮在离心载荷作用下的破裂转速,并与试验结果进行了对比。结果分析表明,建立在弹性基础上的叶轮破裂转速预估方法不够准确。考虑材料非线性的弹塑性计算更接近实际结果,可以应用于叶轮的强度校核和结构优化。破裂转速的计算结果表明,涡轮叶轮的强度储备大大高于压气机叶轮的强度储备,对其进行结构减重设计或优化十分必要。  相似文献   

5.
柴油机涡轮增压器转子一阶临界转速的确定对它的设计和故障诊断都具有重要的意义。利用解析法和有限元法分别对其一阶临界转速进行计算,并将计算结果与实测数据相比较,结果表明,有限元法在计算复杂转子临界转速方面更接近工程实际。  相似文献   

6.
相比于普遍使用的浮动轴承,在涡轮增压器中使用球轴承具有机械效率高和加速响应快的优势。以车用球轴承涡轮增压器为研究对象,用有限元法对轴承-转子系统进行了转子动力学特性的研究,对轴承-转子系统的临界转速进行了计算与分析,这是判断转子工作转速是否稳定和涡轮增压器工作是否可靠的重要依据;建立了增压器模型,并对比了计算结果和试验结果,证明了方法的可行性。通过整机试验表明,球轴承涡轮增压器能够满足当前车用发动机的需求,能够提高发动机的工作性能。  相似文献   

7.
为研究小型燃气涡轮转子工作期间转子轴向温差对转子的动力学特性的影响。利用workbench对转子进行瞬态热仿真,分析转子在工作期间的温度分布规律,并将温度分析结果施加至转子模型上,通过采用传递矩阵法,对温度场作用下涡轮转子的临界转速进行分析计算,结果表明,临界转速随温度的升高降低。轮盘的温度升高会引起第三阶临界转速下降,对一二阶影响很小;轴段的温升对前三阶临界转速都有降低的效应。  相似文献   

8.
针对新型机械增压器四叶、160°扭转角转子系统的结构及工作配合要求,将转子系统进行合理简化后和用三维造型软件进行实体建模.将转子实体模型进行网格化离散处理,施加接触、约束等边界条件,采用无外激振力、忽略阻尼的求解模型进行模态求解.求解后得到其前六阶振动频率和振型,并由振动频率求得临界转速.通过机械增压器工作转速与临界转速的比较,可知其转速裕度能够满足避免发生共振的要求.分析结论为机械增压器降低工作噪声以及后序设计提供了理论依据.  相似文献   

9.
建立涡轮增压器转子的有限元模型,采用有限元软件ANSYS,通过热结构耦合分析,考虑稳态和瞬态温度场作用下,计算转子涡轮和压气机叶轮的应力云图,得到最大等效应力,分析不同转速条件下涡轮增压器转子的应力变化规律。结果表明:稳态温度场作用下,转子的温度分布呈现线性关系,与瞬态温度分布有一定差别。稳态与瞬态温度场作用下转子涡轮的最大等效应力随着转速的增加不断增大。不同的是,随着转速增加,稳态温度场条件下压气机叶轮的最大等效应力逐渐降低,而瞬态温度场作用时最大等效应力不断增大。  相似文献   

10.
讨论了车用涡轮增压器转子轴向力传统理论计算方法和数值模拟计算方法,并针对小型车用汽油机涡轮增压器JP50Q建立了压气机和涡轮系统模型以及叶轮轮背间隙模型。进行了压气机端、涡轮端和叶轮轮背间隙的轴向力数值模拟计算,得到了增压器转子轴向力计算结果。通过分析不同设计工况下的计算结果,得到增压器转子轴向力随转速变化的一般规律。利用数值模拟计算结果,进行了JP50Q涡轮增压器止推轴承设计校核,为增压器止推轴承的设计和可靠性验证提供了理论计算依据。  相似文献   

11.
MEMS研究的新进展——微型系统及其发展应用的研究   总被引:9,自引:4,他引:9  
简要叙述了微电子机械系统(MEMS)研究中的多单元综合体--微型系统,包括它的种类、结构、工作原理及相关的特性。对其应用前景作了讨论,并提出了一些超前的设想  相似文献   

12.
数控手工编程中的数学处理,通常有尺寸的求解和基点(或节点)坐标的求解,基点坐标的求解方法有作图计算法(也称几何作图法)、代数计算法、平面几何计算法、三角函数计算法和平面解析几何计算法等。而用CAD绘图并采用查询法求基点坐标,可省去许多计算的繁琐。  相似文献   

13.
以"2 000 t印染污水资源化成套设备"为例,从需求背景、系统方案、控制系统等方面介绍了基于反渗透膜的印染污水再生处理技术、工艺与设备。该成套设备占地面积小、投资少、运行费用低,目前通过建设"杭州湾新区印染污水资源化示范园"实现了产业化推广应用。  相似文献   

14.
张强 《机电工程》2010,27(11):29-32
随着科技的发展,国家产业结构的调整,冶金企业面临高能耗和用电紧张的严峻挑战,为了缓解企业面临的成本等压力,深入分析、比较了40 000 m3/h制氧机组空压机采用汽轮机或电机拖动的优缺点,通过对比目前电网及蒸汽的实际现状以及两种拖动方式的投资分析,运行成本分析,安全运行经济性、可靠性分析,得出了具有一定工程指导价值的结论。其结果表明,该分析研究为大型设备进一步优化设计奠定了基础。  相似文献   

15.
本文介绍了纳米科技的基本概念,针对纳米材料独特的结构和优异的性能,联系现代仪器仪表的实际情况,阐述了纳米科技在现代仪器仪表领域的应用和前景,目的在于探索高新科技如何与生产实际相结合,与广大同行共同推动仪器仪表产业的发展。  相似文献   

16.
精密小孔的加工越来越多,精度要求也越来越高.而精密小孔的加工和测量都比较困难,要想达到精密小孔要求的尺寸精度、形状和位置精度,就要在加工过程中根据实际加工中存在的问题采取一系列相应的措施,其中使用精度较高的仪器进行测量,是保证加工精度和加工质量关键.为此,设计出一种精密小孔测量仪.  相似文献   

17.
针对市场上各种新型材料及新结构型式刀具的出现,结合国内低加工制造成本的现实,对未来刀具行业将迎来的机遇和市场作出了预期,同时认为新型刀具在生产中的广泛应用,必将促进高速切削技术的迅猛发展,并通过对切削刀具发展趋势的分析,结合现状提出了对策。  相似文献   

18.
设计了基于ADμC812型单片机和TMS320F206型高速数字信号处理器的双CPU结构的多传感器融合与控制系统,介绍了其体系结构、硬件配置、接口电路、工作原理和工作流程。该系统实现了传感器信息融合的高速高精度采集、复杂算法的大数据量实时计算以及模拟量与开关量并有的多控制通道等功能,系统硬件结构简单,可作为泵、马达综合试验台的子系统用于泵、马达性能试验。应用表明,该系统能够满足试验要求,具有很好的可靠性和实时性。  相似文献   

19.
微型机械及相关理论和技术   总被引:3,自引:2,他引:3  
微型机械是一门新兴学科,它的发展十分迅速,本文介绍了微型机械的研究现状,相关理论和技术以及已取得的一些成果。  相似文献   

20.
实验教学是培养学生动手操作能力的重要教学环节,实验教学和管理能够更深层次提高研究型大学本科生的实践能力、科研能力和自主创新能力。在加强实践课程教学,提高教学质量的基础上;在课程建设与实践的研究中,以电工电子学实验室为依托,运用新的方法,优化实验教学内容;认真做好实验过程的指导工作,不断提高教学质量;为进一步探索在实践教学过程中加强教学和管理;培养学生素质教育和自主创新能力培养的研究奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号