首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 532 毫秒
1.
对河北省南部地区28座典型变电站场地土壤中16种优先控制的PAHs含量进行了检测和分析.结果表明,变电站场地土壤中PAHs总量为223.48~1681.17μg/kg,平均值为443.94mg/kg.变电站整体PAHs处于轻微污染水平.利用特征组分比值法和正定矩阵因子分解模型(PMF)分析了污染源类型及贡献率,结果表明,变电站土壤中PAHs主要是石油及其衍生产物污染源,其中生物质和煤炭燃烧等化石燃料燃烧占42.1%,石油及其衍生产物污染源(变压器油、柴油和汽油等混合源)占57.9%.健康风险评价结果表明变电站土壤中PAHs致癌风险较高,非致癌风险相对较低,被测变电站中有潜在致癌风险站点占比为11%,经口摄入和皮肤接触是致癌风险的主要暴露途径,变电站场地内PAHs的生态风险整体处于较低水平.  相似文献   

2.
福建闽江沿岸土壤中多环芳烃含量、来源及健康风险评价   总被引:8,自引:0,他引:8  
为研究福建省闽江沿岸土壤中多环芳烃(PAHs)的残留状况、潜在来源及健康风险,采集闽江沿岸16个土壤样品,利用气相色谱/质谱(GC/MS)分析其中16种PAHs含量,结果表明:研究区土壤中16种PAHs的总含量为70.70~1667.83μg/kg,平均值为480.28μg/kg,其沿闽江沿岸呈“W”型分布模式,具体表现为城市高于郊区的变化;PAHs以2~3环为主,其中萘(Nap)的含量最高.基于PAHs的特征比值和主成分回归结合分析,研究区土壤中PAHs主要是石化和燃烧混合污染源,其中化石燃料高温燃烧占41.45%,石油源及生物质燃烧占49.34%,煤燃烧占9.21%.PAHs总毒性当量浓度值(TEQBaP)为3.10~121.15μg/kg,平均值为36.71μg/kg,37.50%的采样点超过荷兰土壤标准目标参考值(33.00μg/kg),表明闽江沿岸土壤已经受到PAHs不同程度的污染.健康风险评价表明,研究区土壤中PAHs的致癌风险(ILCRs)在10-8~10-6间,说明其致癌风险较小.  相似文献   

3.
该文对变电站场地土壤中7种重金属和16优先控制的多环芳烃(PAHs)含量进行了检测和分析。结果表明,变电站场地土壤中重金属及PAHs浓度在垂直断面上均符合国家土壤环境质量标准,且随着深度增加浓度逐渐减小,土壤深度约为60 cm后基本达到天然背景值。站内表层土壤中重金属元素含量是站外对照点1.40~2.63倍,是河北省中南部平原土壤背景值的1.03~3.85倍,表明该区域表层土壤存在一定程度的重金属污染。变电站表层土壤中PAHs总含量为899.45μg/kg,站内土壤中、高环(4~6环)PAHs是主要污染物,占PAHs的89.66%。变电站表层土壤重金属潜在生态危害处在轻微水平,而PAHs处于中度污染水平,变电站场地土壤污染主要是由生产运行导致的污染物长时间积累所致,同时也受周边环境、交通状况、生产活动等因素影响。就变电站场地土壤而言,场地内PAHs和重金属的污染风险整体处于较低水平。  相似文献   

4.
寿光土壤中多环芳烃的污染特征及风险评估   总被引:1,自引:0,他引:1  
以山东省寿光市为研究区域,采集了39个土壤样品,分析了26种PAHs的含量.结果表明,26种多环芳烃的浓度范围为120~1486μg/kg,平均值为(415±312)μg/kg.16种优控PAHs的浓度范围为84~1076μg/kg,平均值为(289±211)μg/kg.与我国其他区域非点源污染土壤相比,寿光市土壤中PAHs含量处于中等水平.采用克里格(Kriging)插值方法对寿光市土壤中PAHs的空间分布特征进行预测发现,该市PAHs高污染区位于东部开发区和西部工业园,高环与低环PAHs在空间分布上有明显差异.主成分分析结果显示,该市土壤中PAHs有3个主要来源,分别为液体化石燃料燃烧源、石油源以及煤燃烧源,其对主要来源的贡献率分别为44.7%、31.7%和23.6%.相关性分析表明,低环和高环PAHs与土壤有机质含量均显著相关,但低环PAHs的相关系数明显高于高环PAHs,表明低环PAHs更容易受到土壤中有机质的影响,而高环PAHs则受控于近距离沉降.对照荷兰的土壤管理标准,寿光市土壤中Flt和Phe超标较严重,TEQBaP以及致癌风险计算结果表明,寿光市土壤PAHs处于较低风险水平.  相似文献   

5.
以北京某工业污染场地为研究对象,采集130个表层土壤样本,测定了As、 Be、 Cd、 Cu、 Cr、 Hg、 Ni、 Pb、 Sb、 Ti和Zn这11种重金属元素和16种多环芳香烃(polycyclic aromatic hydrocarbons,PAHs)元素的含量.运用正矩阵分解模型(positive matrix factorization,PMF)解析重金属及PAHs污染源,并对各个污染源致癌风险及非致癌风险贡献率进行了分析.结果表明,研究场地土壤重金属含量均在不同程度超出北京土壤环境质量背景值,其中Cd、 Hg、 Pb、 Zn和Cu这5种重金属超标率均50%,污染最为严重. 130个采样点中低环(2~3环)PAHs和高环(4~6环)PAHs含量分别占∑16PAHs含量的39.6%和60.4%, 77%的采样点PAHs含量大于1 000μg·kg~(-1),属于PAHs严重污染.污染源分析Be、 Ti、 As和Ni这4种重金属为自然来源.其余7种重金属和16种PAHs具有3种污染来源,分别为煤炭燃烧源(Hg和∑16PAHs),冶炼源(Cu、 Cr、 Pb和Zn)和交通源(Sb和Cd). 3种污染源对130个采样点内7种污染重金属和16种PAHs平均含量的贡献率依次为8.46%、 90.61%和0.94%.人体健康评价结果显示130个采样点中各污染物的致癌风险值分布在4.17×10~(-6)~39.38×10~(-4)之间,非致癌风险分布在0~32.23之间,致癌风险和非致癌风险最大值均位于焦化厂附近,其中BaP是影响土壤致癌风险的主要污染物, Zn是影响土壤非致癌风险的主要污染物.煤炭燃烧源的平均致癌风险值为2.16×10~(-4),占总平均致癌风险的50.26%.冶炼源的平均非致癌风险值为0.834,占总平均非致癌风险的56.43%,这2种污染源是影响该工业污染场地土壤重金属和PAHs人体健康风险的主要因素.本研究结果能够为相似工业污染场地土壤修复及生产工艺优化提供参考.  相似文献   

6.
黄淮平原农田土壤中多环芳烃的分布、风险及来源   总被引:9,自引:0,他引:9       下载免费PDF全文
对227个黄淮平原农田表层土壤样品中16种多环芳烃(PAHs)含量进行了调查,并对其致癌风险和来源等进行了分析.结果表明,有15种PAHs被普遍检出,各单体检出率在23.3%~100%之间(苊烯未检出).土壤中PAHs总量(∑PAHs15)为33.44~1246μg/kg,平均值为152.4±166.2μg/kg,且以4环及4环以上PAHs为主,其中16.7%的样品中PAHs含量达到了污染水平(>200μg/kg),与国内外其他地区相比,黄淮平原农田土壤中PAHs含量处于相对较低水平.黄淮平原农田土壤7种致癌性PAHs毒性当量浓度(TEQBap)占总毒性当量浓度的98.27%,其中苯并(a)芘(Bap)潜在致癌风险最大.同分异构体比值法和主成分分析结果表明黄淮平原农田土壤中PAHs的主要来源是汽油、柴油高温燃烧、以及煤和秸秆燃烧.相关性分析表明有机质含量与∑PAHs15及PAHs单体含量具有显著相关性,表明有机质是影响PAHs在土壤中含量、空间分布及归趋的一个重要因素.  相似文献   

7.
对衡水地区9座变电站场地土壤中16种优先控制的多环芳烃(PAHs)含量进行了检测和分析,并采用场地健康风险评价方法,对比了基于苯并[a]芘(BaP)的毒性评估模型和基于致癌斜率因子(非致癌参考剂量)的健康风险评估模型.结果显示:变电站场地土壤中PAHs总量在126.89~1181.94 μg/kg,7种致癌PAHs含量...  相似文献   

8.
为实现土壤PAHs (多环芳烃)来源致癌风险的定量化,选取太原市城乡土壤为研究对象,分析PAHs污染水平并建立含量成分谱,利用PMF (正定矩阵因子分解)模型识别污染源,采用蒙特卡罗模拟进行健康风险评估,并联合PMF模型和健康风险模型量化PAHs污染源的健康风险,比较不同污染源对土壤PAHs含量和对致癌风险贡献的差异. 结果表明:①太原市土壤PAHs污染严重,城市地区人群暴露于土壤PAHs的致癌风险超过了可接受风险水平(10?6),农村地区人群超过可接受阈值的概率在10%~50%之间. ②城市土壤中PAHs主要来自燃煤交通混合源(41.5%)、燃煤源(26.0%)、石油源(16.2%)、焦炉排放源(8.2%)和交通排放源(8.1%),农村土壤PAHs主要来自燃煤源(43.3%)、生物质燃烧源(22.3%)、交通排放源(22.7%)和焦炉排放源(11.7%). ③燃煤交通混合源是城市地区致癌风险的最大来源,贡献率为53.7%;交通排放源和燃煤源是农村地区致癌风险的主要来源,贡献率分别为46.3%和45.6%. ④不同污染源对PAHs含量的贡献与其对致癌风险的贡献存在差异,对于城市地区,燃煤交通混合源、交通排放源对PAHs含量的贡献率分别为41.5%、8.1%,而其对致癌风险的贡献率分别为53.7%、13.0%;对于农村地区,交通排放源对PAHs含量的贡献率为22.7%,但其对致癌风险的贡献率为46.3%. 研究显示,规避交通排放源是降低PAHs致癌风险的关键,建议将基于健康风险的定量源解析技术应用到土壤风险管控中,以期更为有效地降低健康风险,保护人体健康.   相似文献   

9.
宋玉梅  王畅  刘爽  潘佳钏  郭鹏然 《环境科学》2019,40(8):3489-3500
饮用水源水体中残留微量多环芳烃(PAHs)对人体健康存在危害.以广州饮用水水源地为研究对象,采集广州部分水厂水源水体及底泥样品,考察了样品中16种PAHs含量及分布,采用美国环保署(USEPA)的RAGS风险评估模型,对水体中PAHs人体健康风险进行了评估.结果表明,广州饮用水水源地水体中PAHs的质量浓度未超过相应的水质标准限值,水体悬浮颗粒物和底泥中ΣPAHs含量处于低至中等水平.水源地水体PAHs暴露的单项非致癌风险指数和总非致癌风险指数均小于1,非致癌风险可以忽略.水源地水体PAHs单项致癌风险和总致癌风险在5. 53×10~(-7)~5. 34×10~(-6),可能存在致癌风险但低于最大可接受风险水平.水源地PAHs为混合型污染源输入,包括石油泄漏、石油燃烧和木材、煤以及生物质的不完全燃烧.水体中PAHs与底泥中PAHs含量密切相关,PAHs在两相间的分布存在平衡分配.  相似文献   

10.
山东省农田土壤多环芳烃的污染特征及源解析   总被引:12,自引:9,他引:3  
2015年7月采集山东省农田表层土壤,采用高效液相色谱紫外/荧光检测器串联方法对美国环保署优先控制的16种多环芳烃(PAHs)进行检测,分析了其含量和组成特点,比较了种植粮食作物的大田土壤和蔬菜大棚土壤、点源污染和非点源污染大田土壤中PAHs的差异,采用比值法和正定矩阵因子模型对PAHs来源进行解析,并评价了其风险.结果表明,16种PAHs总含量(∑16PAHs)范围为111.5~2744.1 ng·g-1,均值为556.3 ng·g-1,与国内其他地区的农田土壤污染水平相比处于中等水平.组成上,苊、芴、荧蒽的比例较高,而茚并(1,2,3-cd)芘的比例较低.点源污染大田土壤中∑16PAHs含量和7种致癌PAHs的比例均显著高于非点源污染大田;蔬菜大棚土壤与附近的大田土壤相比,∑16PAHs含量没有显著差异,且均是3~4环PAHs比例较高.山东省农田土壤中的PAHs主要来自于燃烧源,其中燃煤和生物质燃烧占42.7%,交通产生的石油燃烧占19.3%,此外炼焦排放占22.8%,石油污染占15.2%.风险评估表明,山东省非点源污染大田土壤和蔬菜大棚土壤中总毒性当量含量均未超过加拿大土壤环境质量标准,但部分点源污染大田土壤超标,具有潜在的风险.  相似文献   

11.
对福州市不同土地利用类型下5种功能区(加油站、工业区、文教区、公园和居民区)的50个土壤样品中多环芳烃(PAHs)含量进行了分析,并对土壤中PAHs的污染程度进行了评价,同时应用因子分析/多元线性回归方法对不同功能区土壤中PAHs的来源进行了解析.结果表明,福州市表层土壤中PAHs总含量的平均值为595.9μg/kg,在国内外处于中等含量水平,为轻度污染.土壤中PAHs来源以化石燃料的燃烧源为主,煤的燃烧占53%,石油燃烧占47%.不同功能区土壤都存在一定程度的PAHs污染,15种PAHs总量的大小顺序为加油站>工业区>居民区>文教区>公园,不同功能区土壤中PAHs的来源虽然有所差异,但都以化石燃料燃烧为主要来源.  相似文献   

12.
为了解钢铁工业区对土壤环境的影响以及土壤的污染状况,采集上海典型钢铁工业区下风向的14个表层土壤样品,应用气相色谱-质谱联用仪(GC-MS)检测了样品中16种优控PAHs(多环芳烃)的含量水平,分析了钢铁工业区下风向土壤中PAHs的组成分布特征,并利用比值法和主成分分析法对土壤中的PAHs进行溯源.结果表明,钢铁工业区下风向土壤中∑16 PAHs(16种优控PAHs的含量)范围为167.0~2 355.0 μg/kg,∑7PAHs(7种具有致癌作用的PAHs的含量)在∑16 PAHs中平均比例为50.4%,近距离样区(< 1 km)表层土壤中∑16 PAHs平均值最高,为1 057.7 μg/kg,远距离样区(5~10 km)污染相对较轻,平均值为381.4 μg/kg;宝3、宝6和宝9采样点于钢铁工业区烧结工艺的下风向,导致宝3采样点∑16 PAHs最高,为2 355.0 μg/kg,宝3、宝6和宝9采样点土壤中PAHs含量依次降低;表层(0~20 cm)土壤中PAHs单体含量最高的为荧蒽,致癌性最强的苯并[a]芘含量范围为10.0~194.0 μg/kg,环数组成以4环为主,平均比例为46.3%,其次是5~6环,二者平均比例为39.9%,随着距离工业区越远,4环的组成比例越高,5~6环比例降低;比值法和主成分分析法结果显示土壤中PAHs主要来源于石油、煤的燃烧和机动车尾气的排放.研究显示,钢铁工业对多环芳烃贡献较大,下风向土壤中总多环芳烃的含量和高环多环芳烃比例都呈现明显的随距离递减特征,石油、煤的燃烧和机动车尾气的排放是其多环芳烃的最主要来源.   相似文献   

13.
采集安徽省内14个采样点的24个室内降尘样品,检测16种多环芳烃(PAHs)含量.结果表明,安徽省不同区域室内降尘中ΣPAHs浓度范围为0.52~89.3 μg/g,平均浓度为20.7 μg/g.降尘中PAHs以5环为主,其次是4环和3环.PAHs组成分析表明,几乎全部样品中PAHs均以高环(4~6环)为主,其高达60.5%~97.0%,仅在4个样品中检出了较高比例的低环PAHs (2~3环).这说明多数室内降尘中PAHs污染由交通运输(汽车和船舶)以及化工厂等高温燃烧排放造成.而安庆、芜湖及六安地区可能存在较严重的石油污染或煤、木材等低温燃烧源污染.公共场所、城市家庭和农村家庭降尘中PAHs的浓度存在明显的差异,总体上呈现:公共场所>城市家庭>农村家庭.异构体分析表明,公共场所和城市家庭内存在混合来源,而农村家庭以燃烧源为主.致癌能力分析表明,城市家庭降尘中的苯并[a]芘当量(BaPE)值略高于农村家庭.公共场所降尘中的BaPE值远大于家庭场所,是农村家庭或城市家庭场所的2倍多.  相似文献   

14.
为研究沈阳城市表层土壤中多环芳烃(PAHs)污染特征,于2017年9月采集了沈阳城区74个表层土壤样品,检测了土壤中16种优控PAHs的含量,并利用基于蒙特卡罗模拟的概率风险评价模型定量评估了其健康风险。结果表明:沈阳城市表层土壤中PAHs含量为283~21821 μg/kg,平均值为2370 μg/kg;与国内外其他城市土壤污染状况相比,沈阳城市表层土壤中PAHs的污染较为严重。健康风险评价结果表明,沈阳城市表层土壤中PAHs对儿童和成人造成的总致癌和非致癌风险均处于可接受的水平;其中,苯并[a]芘是致癌风险的最主要贡献物质,芘、荧蒽和菲是非致癌风险的最主要贡献物质。  相似文献   

15.
重庆金佛山土壤中PAHs含量的海拔梯度分布及来源解析   总被引:6,自引:5,他引:1  
师阳  孙玉川  梁作兵  任坤  袁道先 《环境科学》2015,36(4):1417-1424
高海拔山区的冷凝效应使其成为了持久性有机污染物(persistent organic pollutants,POPs)的储存库.利用气相色谱-质谱联用仪(GC/MS)测定了重庆金佛山南坡不同海拔高度10个表层土壤样品中多环芳烃(polycyclic aromatic hydrocarbons,PAHs)的含量和组成,运用比值法和主成分分析法解析其污染来源,采用Ba P毒性当量浓度(TEQBa P)评价其生态风险.结果表明,土壤中16种优控PAHs的含量范围是240~2 121 ng·g-1,平均值为849 ng·g-1,并以2~3环为主,7种致癌性PAHs的含量平均占到了总PAHs的17.8%.研究区土壤中不同环PAHs和PAHs的总量都随着海拔的升高有增加的趋势,其中低环的增加趋势最显著,而高环的波动性较大,但不同环PAHs占总PAHs的比例并未随着海拔的升高表现出一定的规律性.研究区土壤中PAHs主要来自于石油源,石油产品以及煤炭和生物质的燃烧源.研究区土壤已受到一定程度的污染,但毒性风险较小.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号