首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
以α-Si3N4粉末为原料,Y2O3和MgAl2O4体系为烧结助剂,采用无压烧结方式,研究了烧结温度、保温时间、烧结助剂含量以及各组分配比对氮化硅致密化及力学性能的影响。结果表明:以Y2O3和MgAl2O4为烧结助剂体系,氮化硅陶瓷在烧结温度为1 600 ℃,保温时间为4 h,烧结助剂含量为12.5%(质量分数),Y2O3和MgAl2O4质量比为1∶1时,综合性能最好;氮化硅陶瓷显气孔率为0.21%,相对密度为98.10%,抗弯强度为598 MPa,维氏硬度为15.55 GPa。  相似文献   

2.
以氧化铝、活性碳为烧结助剂,以碳化硼为基体、采用真空热压烧结技术制备碳化硼陶瓷。研究成分配比、烧结工艺对烧结体致密度及力学性能的影响;探讨了添加剂碳化硼陶瓷的烧结机理。结果表明,以氧化铝、活性碳为烧结助剂,采用真空热压烧结工艺,制备出碳化硼陶瓷;碳化硼烧结的最佳材料配方与烧结工艺:B4C:Al2O3:C=70:15:15,烧结温度1930℃,压力20MPa,保温时间1h;所得碳化硼烧结体性能:开口气孔率1.49%,相对密度为90.33%,抗弯强度为144.27MPa,硬度(HRA)95。  相似文献   

3.
添加Mg-Al-Si体系烧结助剂的氮化硅陶瓷的无压烧结   总被引:9,自引:1,他引:8  
以MgO-Al2O3-SiO2体系作为烧结助剂,研究了氮化硅陶瓷的无压烧结。着重考察了烧结温度、保温时间以及烧结助剂用量等工艺因素对氮化硅陶瓷材料力学性能和显微结构的影响,通过工艺调整来设计材料微观结构以提高材料的力学性能。在烧结助剂质量分数为3.2%的情况下,经1 780℃,3 h无压烧结,氮化硅大都呈现长柱状β-Si3N4晶粒,具有较大的长径比,显微结构均匀。样品的相对密度达99%,抗弯强度为956.8 MPa,硬度HRA为93,断裂韧性为6.1 MPa·m1/3。具有较大长径比晶粒构成的显微结构是该材料表现较高力学性能的原因。  相似文献   

4.
采用热压烧结法制备ZrB2-SiC复合材料。研究了热压烧结温度、保压压力、保温时间对ZrB2-SiC复合材料性能的影响。结果表明:当热压烧结温度为1 750℃,保压压力为30 MPa,保温时间为30 min时,ZrB2-SiC复合材料的力学性能最佳(硬度HRA为89,抗弯强度为670.91 MPa,断裂韧性为7.8 MPa.m1/2)。  相似文献   

5.
《陶瓷》2017,(9)
利用氮化硅陶瓷的自增韧技术,使用复合烧结助剂和在氮化硅基体中添加长柱状β-Si_3N_4晶种,制备高断裂韧性的氮化硅陶瓷。采用X射线衍射、扫描电镜、阿基米德法、三点抗弯曲强度、单边切口梁法等测试方法对陶瓷的组成、显微结构、显气孔率以及抗弯强度和断裂韧性等进行了分析与表征。首先研究了无压烧结制备氮化硅陶瓷过程中,烧结助剂(Y_2O_3、Al_2O_3)对其烧结性能和力学性能的影响,当Y_2O_3含量为8wt%,Al_2O_3含量为4wt%时,氮化硅陶瓷的相对密度达95%以上,抗弯强度为674MPa,断裂韧性为6.34MPa·m~(1/2)。再通过引入La_2O_3提高氮化硅晶粒的长径比,使氮化硅陶瓷的抗弯强度和断裂韧性分别达到686MPa和7.42MPa·m~(1/2)。通过无压烧结工艺,在1750℃制备了长柱状的β-Si_3N_4晶种,晶种的平均长度为2.82μm,平均粒径为0.6μm,平均长径比为4.7。笔者着重研究了晶种对氮化硅陶瓷烧结性能和力学性能的影响。在氮化硅陶瓷中加入晶种后,其烧结性能和抗弯强度略有降低,但断裂韧性却得到了很大的提高;且随着晶种添加量的增加,断裂韧性先升高再降低,掺入量为2wt%时断裂韧性达到最大(7.68MPa·m~(1/2)),提高了20%以上。  相似文献   

6.
以SiC为基体,Y_2O_3和Al_2O_3为烧结助剂,氮化硼纳米管(BNNTs)为增韧补强剂,采用喷雾造粒和干压成型方法,通过真空无压烧结工艺制备了BNNTs/SiC陶瓷复合材料。讨论BNNTs添加量和烧结工艺对BNNTs/SiC陶瓷复合材料的致密度、微观结构和力学性能的影响。实验结果表明:采用单因素法得到BNNTs的最佳添加量为1.5 wt.%和压制压力为100 MPa,确定了最佳烧成制度为:最高温度2050℃,保温时间2.5 h。采用阿基米德排水法测试样品密度,其相对密度达到99.0%,通过三点弯曲法和压痕法分别测试了样品的抗弯强度、断裂韧性和维氏硬度。BNNTs/SiC的抗弯强度、断裂韧性和维氏硬度分别达到了546.3 MPa、6.53 MPa·m~(1/2)和26.8 GPa。  相似文献   

7.
采用Cu-Sn预合金粉和单质Co粉作为金刚石磨具胎体的主要成分,为了研究烧结工艺对磨具胎体性能的影响,进行了正交烧结实验,利用极差分析方法确定影响因素的敏感性,并借助SEM形貌、金相显微观察、力学性能测试等检测方法对比分析实验结果。结果表明:烧结试样密度、硬度的影响因素从大到小均为烧结温度、保温时间、保压压力;抗弯强度的排序则为保压压力保温时间烧结温度。烧结工艺还影响试样的内部显微组织,如孔隙率分布情况,晶粒形态、大小等。实验范围内该粉末在烧结温度800℃、保温时间120s、保压压力25MPa时综合性能最佳。  相似文献   

8.
氮化硅陶瓷具有优异的物理机械性能和化学性能,被广泛应用于高温、化工、冶金、航空航天等领域。在结构陶瓷中氮化硅陶瓷虽具有相对较高的断裂韧性,但为了进一步拓宽氮化硅陶瓷的运用领域和提高其使用可靠性,改善其断裂韧性一直是该材料研究的重要课题。笔者通过利用氮化硅陶瓷的自增韧技术,使用复合烧结助剂和在氮化硅基体中添加长柱状β-Si_3N_4晶种,制备高断裂韧性的氮化硅陶瓷。采用X射线衍射、扫描电镜、阿基米德法、三点抗弯曲强度、单边切口梁法等测试方法对陶瓷的组成、显微结构、显气孔率以及抗弯强度和断裂韧性等进行了分析与表征。首先研究了无压烧结制备氮化硅陶瓷过程中,烧结助剂(Y_2O_3和Al_2O_3)对其烧结性能和力学性能的影响,当Y_2O_3含量为8wt%,Al_2O_3含量为4wt%时,氮化硅陶瓷的相对密度达95%以上,抗弯强度为674 MPa,断裂韧性为6.34 MPa·m~(1/2)。再通过引入La_2O_3提高氮化硅晶粒的长径比,使氮化硅陶瓷的抗弯强度和断裂韧性达到686 MPa和7.42 MPa·m~(1/2)。笔者通过无压烧结工艺,在1 750℃制备了长柱状的β-Si_3N_4晶种,晶种的平均长度为2.82μm,平均粒径为0.6μm,平均长径比为4.7,着重研究了晶种对氮化硅陶瓷烧结性能和力学性能的影响。氮化硅陶瓷中加入晶种后,其烧结性能和抗弯强度略有降低,但断裂韧性得到了很大的提高;且随着晶种添加量的增加,断裂韧性先升高再降低,掺杂量为2wt%时,断裂韧性达到最大(7.68 MPa·m~(1/2)),提高了20%以上。  相似文献   

9.
荆涛  许晓敏  郭伟 《硅酸盐通报》2015,34(3):722-726
以稻壳为原料,碳热还原法常压条件下合成出Si3N4粉体,进而模压成型,在低温下成功烧成了多孔氮化硅陶瓷.采用Archimedes法、三点弯曲法测量了烧结试样的密度、气孔率及抗弯强度.通过XRD测定了烧结试样的物相组成,并用SEM观察其显微形貌.结果表明:在1450℃到1550℃内均能烧成多孔氮化硅陶瓷,随着温度的升高,试样的气孔率逐渐降低,抗弯强度逐渐增强.1450~1500℃烧成试样的显气孔率为55.51% ~35.15%,其抗弯强度为23.74 ~86.85 MPa,主要物相为β-Si3N4.  相似文献   

10.
在不同烧结温度、30 MPa压力下保温1h制备了不同Yb_2O_3含量的氮化硅陶瓷,通过XRD、SEM、阿基米德排水法、三点抗弯强度法、Vickers压痕法等手段测定了氮化硅陶瓷的物相组成、显微结构、致密度、抗弯强度、断裂韧性和硬度。研究了烧结温度对不同Yb_2O_3含量的氮化硅陶瓷的相变、显微结构和力学性能的影响。研究表明,Yb_2O_3含量的变化导致了Yb_2O_3和氮化硅表面SiO_2反应配比的变化,从而在Yb_2O_3-SiO_2二元体系和Yb_2O_3-SiO_2-Si3_N_4三元体系中,晶界第二相生成物也发生了变化。这些第二相生成物种类与烧结温度共同影响氮化硅陶瓷材料的显微结构和力学性能。5 wt%Yb_2O_3含量的Si_3N_4陶瓷在1850℃获得所有9个样品中最大的抗弯强度和断裂韧性,分别为874 MPa和5.83 MPa·m1/2;15 wt%Yb_2O_3含量Si_3N_4陶瓷中出现的第二相Yb_4Si_2O_7N_2,抑制了氮化硅晶粒在高温下的异常长大。  相似文献   

11.
通过添加烧结助剂,采用常压烧结工艺制备出不同气孔率(19%~54%)的氮化硅陶瓷.采用Archimedes法、三点弯曲法和Vickers硬度测试法测量了材料的密度、气孔率、抗弯强度及硬度.用X射线衍射及扫描电镜检测了相组成和显微结构.用谐振腔法测试了氮化硅陶瓷在10.2 GHz的介电特性.结果表明:材料具有优良的介电性能.随着烧结助剂的减少,样品中气孔率增加,力学性能有所下降,介电常数和介电损耗降低.添加Lu2O3所制备的氮化硅陶瓷的力学性能和介电性能优于添加Eu2O3或Y2O3制备的氮化硅陶瓷.当气孔率高于50%时,多孔氮化硅陶瓷(添加入5%的Y2O3或Lu2O3,或Eu2O3,质量分数)的抗弯强度可达170 MPa,介电常数为3.0~3.2,介电损耗为0.000 6~0.002.  相似文献   

12.
In this paper, spodumene/mullite ceramics with good thermal shock resistance were prepared from spodumene, quartz, talc, and clay when the sintering temperature was 1270℃. In the sintering process, the effect of holding time on densification, mechanical properties, phase transformation, microstructure, and thermal shock resistance of the composite ceramics were investigated. The phase transition and microstructures of the ceramics were identified via X-ray diffraction (XRD) and scanning electron microscopy (SEM). The interaction between holding time and bulk density was studied by response surface methodology. The result show that an appropriate holding time can improve the mechanical properties of spodumene/mullite ceramics. When the holding time was kept 90 min, the spodumene/mullite ceramics with the apparent porosity was .47%, the bulk density was 2.28 g/cm3, and bending strength was 63.46 MPa. Furthermore, since no cracks formed after 20 thermal shock cycles for the composite ceramics with a bending strength decreasing rate of 12.66%, it is revealed that spodumene/mullite ceramics exhibit good thermal shock resistance. Therefore, this study can provide beneficial guidance for both industrial production and energy conservation.  相似文献   

13.
In this work, spodumene/mullite ceramics with low thermal expansion were successfully prepared from spodumene, quartz, talc, and clay. The effects of spodumene content and sintering temperature on the mechanical properties of spodumene/mullite ceramics were investigated. The formed phases were then detected by X-ray diffraction analysis and the microstructures of the sintered bodies were determined by scanning electron microscopy. The interaction effects of the spodumene content and sintering temperature on the apparent porosity and bulk density were studied by response surface methodology. The results demonstrate that an appropriate sintering temperature and spodumene content can promote densification, improve the mechanical properties, and reduce the coefficient of thermal expansion (CTE) of spodumene/mullite ceramics. At the spodumene content of 40 wt.%, the sintering temperature of 1270°C, and the holding time of 90 min, the bending strength was 60.45 MPa, the CTE was 1.73 × 10–6/°C (α[25–650°C] < 2 × 10–6/°C), the bulk density was 2.28 g cm-3, and the apparent porosity was 0.43%. Therefore, this study was of guiding significance for reducing the production cost of spodumene low thermal expansion ceramics and improving product quality.  相似文献   

14.
A new method for preparing porous silicon nitride ceramics with high porosity had been developed by carbothermal reduction of die-pressed green bodies composed of silicon dioxide, carbon, sintering additives, and seeds. The resultant porous silicon nitride ceramics showed fine microstructure and uniform pore structure. The influence of SiO2 particle size and sintering process (sintering temperature and retaining time) on the microstructure of sintering bodies was analyzed. X-ray diffractometry demonstrated the formation of single-phase β-Si3N4 via the reaction between silicon dioxide and carbon at high temperature. SEM analysis showed that pores were formed by the banding up of rod-like β-Si3N4 grains. Porous Si3N4 ceramics with a porosity of 70–75%, and a strength of 5–8 MPa, were obtained.  相似文献   

15.
Silicon nitride ceramics were pressureless sintered at low temperature using ternary sintering additives (TiO2, MgO and Y2O3), and the effects of sintering aids on thermal conductivity and mechanical properties were studied. TiO2–Y2O3–MgO sintering additives will react with the surface silica present on the silicon nitride particles to form a low melting temperature liquid phase which allows liquid phase sintering to occur and densification of the Si3N4. The highest flexural strength was 791(±20) MPa with 12 wt% additives sintered at 1780°C for 2 hours, comparable to the samples prepared by gas pressure sintering. Fracture toughness of all the specimens was higher than 7.2 MPa·m1/2 as the sintering temperature was increased to 1810°C. Thermal conductivity was improved by prolonging the dwelling time and adopting the annealing process. The highest thermal conductivity of 74 W/(m∙K) was achieved with 9 wt% sintering additives sintered at 1810°C with 4 hours holding followed by postannealing.  相似文献   

16.
We prepared sintered reaction-bonded silicon nitride ceramics by using yttria and magnesia as sintering additives and evaluated effects of the nitridation temperature on their microstructure, bending strength, fracture toughness, and thermal conductivity. The effects of the nitridation temperature were large, but different depending on the property. The ratio of β-phase in the nitrided compacts significantly increased with increasing the nitridation temperature, whereas their microstructures had no clear difference. Although the bending strength varied, it maintains a high value of 800 MPa. Fracture toughness was almost constant regardless the temperature. The thermal conductivity improved as the β-phase in the nitrided compact increases. This resulted in a decrease of the lattice oxygen content and increase of the thermal conductivity. Therefore, elevating the nitridation temperature and consequently the β-phase ratio should be a promising strategy for achieving compatibly high strength and high thermal conductivity, which are generally known to be in a trade-off relationship.  相似文献   

17.
以碳化硅、氮化铝、层析氧化铝、氢氧化铝、氟化铝、滑石为主要原料,石墨为造孔剂通过原位反应烧结技术制备碳化硅/堇青石复相多孔陶瓷.研究了含铝化合物种类、烧结温度、石墨含量对SiC/堇青石复相多孔陶瓷相组成、微观结构、气孔率和抗折强度的影响,同时对S0组在1200℃烧结温度下制得的SiC/堇青石复合多孔陶瓷的孔径分布进行了测试分析.结果表明:以AlN为铝源在1200℃下烧结,石墨含量在15%时,堇青石结合SiC多孔陶瓷的抗弯强度和气孔率两项综合性能达到最优,气孔率为31.99%,相应的弯曲强度86.20 MPa.S0组的平均孔径大小在3.0191 μm.  相似文献   

18.
李维亮  吕相南  张华  金江 《硅酸盐通报》2017,36(5):1562-1566
以氧化铝纤维和玻璃粉为主体材料,活性炭粉为造孔剂,通过半干压成型工艺制备了高温烟气过滤陶瓷.详细研究了玻璃粉含量、造孔剂含量以及烧成温度对材料过滤阻力、抗折强度、显气孔率等性能的影响,并对原料配方和烧成制度进行了优化,最优配方为:氧化铝70wt%、玻璃粉30wt%、外加造孔剂25wt%、羧甲基纤维素钠8wt%,最佳的烧成温度为1100 ℃,制得的高温烟气过滤陶瓷抗折强度8.9 MPa,过滤阻力95 Pa,显气孔率达59%.  相似文献   

19.
采用氧化铝(Al2 O3)和氧化钇(Y2 O3)为烧结助剂,利用无压烧结工艺在低温下制备氮化硅陶瓷材料。利用XRD和SEM等着重研究了无压烧结氮化硅陶瓷低温阶段时的物相组成及其致密化。结果表明:当添加剂含量为10%,烧结温度高于1430℃时,α→β相转变较快;当烧结温度达到1510℃时,α相全部转变为β相。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号