首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 875 毫秒
1.
制备了锌/富勒醇复合材料并研究了富勒醇对复合材料性能的影响.锌/富勒醇复合材料的制备分两步进行,其中包括电沉积制备富勒醇薄膜和电镀金属锌.采用辉光放电光谱法对富勒醇在镀层中的分布进行了表征.通过对锌/富勒醇复合材料硬度、耐盐雾腐蚀、交流阻抗谱和减摩性测试,分析了富勒醇对复合材料性能的影响.结果表明:富勒醇在锌/富勒醇复...  相似文献   

2.
采用富勒醇成膜与电镀镍两步电沉积的方法制备了镍/富勒醇复合材料,并研究了富勒醇在复合镀层中的扩散行为.镀液组成及工艺参数为:NiSO4·7H20 250~350 g/L,NiCl230~60 g/L,H3803 30~40 g/L,十二烷基硫酸钠0.05~0.10 g/L,电流密度10 A/dm2,室温下施镀20 mi...  相似文献   

3.
将富勒烯(C60)与液溴反应制备溴代富勒烯,进而在碱性环境中与甲醇通过亲核取代反应制备得到两亲性富勒醇衍生物——甲氧基富勒醇。以环氧氯丙烷为交联剂,在碱性介质中合成水溶性的聚β-环糊精(β-CDP)。将甲氧基富勒醇与β-CDP通过研磨等方法进行超分子组装,得到甲氧基富勒醇与β-CDP的超分子组装体。采用FTIR、1 HNMR、TG-DTG对甲氧基富勒醇的结构进行表征,采用FTIR、SEM对β-CDP的结构进行表征,采用FTIR、SEM、DLS对组装体的结构进行表征。  相似文献   

4.
通过研究富勒醇在铜基体中的扩散行为,进而得到了富勒醇分子在多晶金属中的动力学性质。使用无限薄层扩散源向一维半无限大介质中扩散的扩散模型。薄膜的制备采用电沉积的方法,电沉积富勒醇的成分被确定为C60O(OH)12。采用辉光放电光谱法(GDS)、X射线衍射法(XRD)、拉曼光谱法(Raman)等手段对富勒醇在铜基体中的扩散机理以及存在状态进行了表征。结果表明:在250~600℃的条件下,富勒醇在铜基体中的扩散激活能为12.63 kJ·mol-1·K-1,且在扩散过程中铜被氧化为+1价。因此,富勒醇在铜基体中的扩散为反应型扩散。  相似文献   

5.
电沉积(Fe-Ni)-Al_2O_3复合镀层及其摩擦磨损性能的研究   总被引:5,自引:0,他引:5  
对(Fe-Ni)-Al_2O_3复合镀层的制备工艺及其摩擦磨损性能进行了试验研究。结果表明,根据传统的电镀工艺,悬浮在酸性氯化物电解液中的Al_2O_3,微粒能与Fe、Ni共沉积形成(Fe-Ni)-Al_2O_3复合镀层,通过正交试验,确定了制备复合镀层的最佳工艺参数。与Fe-Ni合金镀层和45~#淬火钢相比,(Fe-Ni)-Al_2O_3复合镀层具有良好的耐磨性和减摩性。  相似文献   

6.
本文采用四丁基氢氧化铵催化碱法制备富勒醇,并以富勒醇为原料,采用溶胶凝胶法制备富勒醇修饰氮掺杂二氧化钛光催化材料,对该复合材料的成分、结构等进行表征与分析,并研究复合材料的光催化还原CO2的性能。结果表明,复合材料在可见光区的光吸收性能增强,表现出良好的室温可见光催化还原CO2活性,其中CO平均生成速率达5.560 μmol·g-1·h-1,CH4平均生成速率为0.789 μmol·g-1·h-1。分析认为,富勒醇复合与N掺杂有效提高了TiO2的可见光催化活性。  相似文献   

7.
在90℃下,采用含有25 g/L硫酸镍,20 g/L次磷酸钠、35 g/L柠檬酸钠、0~6 g/t,卤磷酸钙和15 g/t.硫酸铵的镀液(pH 5.5),制备了基于卤磷酸钙的发光化学镍复合镀层.研究了镀液pH对复合镀层的沉积速率及卤磷酸钙含量的影响.采用硬度测量、磨损测试、腐蚀试验、紫外光谱,扫描电镜和X射线衍射对复合镀层进行了表征.在最佳卤磷酸钙质量浓度(4 g/L)下所得的复合镀层含77.59%(质量分数)镍、7.58%(质量分数)磷和14.83%(质量分数)卤磷酸钙.由于卤磷酸钙是硬质粒子,随着其嵌入量的增多,复合镀层的硬度增大.在存在卤磷酸钙的条件下,化学镍复合镀层的耐磨和耐蚀性能均显著提高.  相似文献   

8.
纳米粒子复合镀的研究现状   总被引:2,自引:0,他引:2  
阐述了纳米粒子在复合镀层制备过程中的沉积机理,并对纳米粒子复合镀层的结构、性能及其影响因素进行了分析.综述了近几年来国内外纳米粒子复合镀层的研究现状和发展趋势.分析了纳米粒子复合镀层比一般的复合镀层具有更高的硬度、更好的耐磨性、耐蚀性、高温抗氧化性和光、电催化性能的原因.最后,对纳米粒子复合镀技术的发展及其应用前景进行了展望.  相似文献   

9.
在Q235碳钢表面先预浸镀铜,然后采用超声-电沉积方法获得Cu-SiC纳米复合镀层。研究了纳米SiC含量对纳米复合镀层表面形貌的影响,讨论了阴极电流密度、超声功率、温度和电沉积时间对复合镀层显微硬度的影响,获得了较佳的工艺条件:镀液中SiC纳米颗粒含量9g/L,阴极电流密度6A/dm2,超声波功率200W,镀液温度30°C,电沉积时间40min。在此条件下制备Cu-SiC纳米复合镀层,测试了镀层的结合力,并与普通铜镀层进行比较,研究了复合镀层的表面形貌、显微硬度以及在3.5%NaCl溶液中的电化学阻抗谱(EIS)。结果表明,所制备的复合镀层结合力良好,其表面颗粒尺寸在0.5~1.0μm之间(小于普通铜镀层的1~4μm),显微硬度和反应电阻分别为294.6HV和2446.5.cm2(大于普通铜镀层的162.0HV和1538.7.cm2)。Cu-SiC纳米复合镀层具有较好的机械性能和耐腐蚀性能。  相似文献   

10.
书讯     
《电镀与涂饰》2013,(11):4+46+52+56+64+80
《复合电镀技术》(作者:郭鹤桐)定价:48元复合电镀既是重要的表面工程技术,也是复合材料制备的很好的方法。这是复合电镀技术专著,对复合电镀中的概念、工艺、理论问题和镀层性能进行了系统阐述,体现了复合电镀研究水平。全面介绍了各种防护装饰性复合镀层和功能性复合镀层的制备、性能和应用,展现了复合电镀技术的应用成果和发展方向。这  相似文献   

11.
The stability of composite palladium membranes is of key importance for their application in hydrogen energy systems. Most of these membranes are prepared by electroless plating, and beforehand the substrate surface is activated by a SnCl_2–PdCl_2 process, but this process leads to a residue of Sn, which has been reported to be harmful to the membrane stability. In this work, the Pd/Al_2O_3 membranes were prepared by electroless plating after the SnCl_2–PdCl_2 process. The amount of Sn residue was adjusted by the SnCl_2 concentration, activation times and additional Sn(OH)_2coating. The surface morphology, cross-sectional structure and elemental composition were analyzed by scanning electron microscopy(SEM), metallography and energy dispersive spectroscopy(EDS), respectively. Hydrogen permeation stability of the prepared palladium membranes were tested at450–600 °C for 400 h. It was found that the higher SnCl_2 concentration and activation times enlarged the Sn residue amount and led to a lower initial selectivity but a better membrane stability. Moreover, the additional Sn(OH)_2coating on the Al_2O_3 substrate surface also greatly improved the membrane selectivity and stability.Therefore, it can be concluded that the Sn residue from the SnCl_2–PdCl_2 process cannot be a main factor for the stability of the composite palladium membranes at high temperatures.  相似文献   

12.
以聚乙二醇(PEG)为模板制备了纳米氧化铜。以一种高分子材料为包覆材料自组装制备了纳米铝/氧化铜(Al/CuO)复合材料。采用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、能谱仪(EDS)、X射线衍射(XRD)等对材料的结构形貌进行了表征。利用热重分析法(TG)和差示扫描量热法(DSC)对比研究了自组装法(含包覆材料)与超声共混法(不含包覆材料)制得样品的热性能。研究了不同Al与CuO摩尔比下Al/CuO复合材料的放热量。结果表明,纳米铝与CuO发生铝热反应的放热峰约为576.4℃,放热量达1 093J/g。含有包覆材料的复合材料比不含包覆材料的复合材料具有更大的放热量。在纳米铝与CuO摩尔比为1.0∶1.2时铝热反应放热量最大,可达1 093J/g。  相似文献   

13.
利用电化学沉积法制备以纳米SiO_2微粒为增强相的Cu-纳米SiO_2复合镀层。研究发现:Cu-纳米SiO_2复合镀层的形貌特征不同于纯铜镀层的,其性能较好。增强相纳米SiO_2微粒引起形核增殖、结晶细化,同时形成弥散强化,致使Cu-纳米SiO_2复合镀层的形貌特征不同,性能得以改善。随着镀液中纳米SiO_2微粒的质量浓度的增加,Cu-纳米SiO_2复合镀层的显微硬度先升高后降低,体积磨损率先减小后增大。当镀液中纳米SiO_2微粒的质量浓度为35g/L时,Cu-纳米SiO_2复合镀层的显微硬度最高,接近1 500 MPa,约为纯铜镀层的1.46倍;体积磨损率最低,为6.59×10-5 mm3/(N·m),比纯铜镀层的降低约35.4%。  相似文献   

14.
为了解决聚丙烯材料上水性涂料附着力较差的技术难题,首先合成一种丙烯酸酯单体改性水性氯化聚丙烯树脂,采用该树脂制备聚丙烯塑料水性底漆,并研制配套的水性面漆和罩光清漆,制备得到成套水性复合涂层体系。使用傅里叶变换红外光谱仪(FT-IR)、动态光散射(DLS)、凝胶渗透色谱(GPC)和差示扫描量热法(DSC)对所制备丙烯酸改性水性氯化聚丙烯树脂进行结构表征。重点考察了水性底漆的附着力、复合涂层的附着力以及复合涂层的耐热水煮性能,结果表明:水性底漆和复合涂层均表现出优异的附着力,涂层耐热水煮性能较好。最后,对水性复合涂层的性能进行测试,结果表明:复合涂层综合性能优异,在汽车内外饰及各类聚丙烯材料领域具有较大的应用前景。  相似文献   

15.
采用水热法制备出不同质量比的氧化铈/钨酸镍(CeO2/NiWO4)的复合粒子,再选用硅烷偶联剂KH560对其进行改性,利用傅里叶变换红外光谱(FTIR)、X射线衍射(XRD)和扫描电子显微镜(SEM)表征了复合粒子的结构与形貌。将改性的复合粒子分散于环氧树脂(EP)中,然后喷涂在碳钢基体上制备CeO2/NiWO4/EP复合涂层,利用电化学交流阻抗(EIS)、加速浸泡实验和摩擦磨损试验(Taber)测试涂层的防腐与摩擦性能。结果表明:添加CeO2/NiWO4复合粒子的环氧树脂涂层的防腐耐磨性能大幅度提高,而且当复合粒子中CeO2与NiWO4的质量比为4∶3时,涂层防腐耐磨性能最好,该复合环氧涂层在3.5%NaCl水溶液中浸泡后期(45天)仍保持较高的阻抗模量(7.36×108 Ω/cm2),比纯环氧树脂涂层高一个数量级。同时,经过10000转摩擦磨损后,此复合涂层的质量损失较纯环氧涂层减少56%,厚度损失量仅为CeO2/EP的50%,表现出最优异的防腐耐磨性能。  相似文献   

16.
探讨了应用于锌-镍电池负极集流体的锡基复合电镀工艺。通过SEM表征了材料的形貌,并将锡基复合镀层材料与普通光滑平面锡基材料进行物理性能及镀层致密性对比分析。结果表明:在相同工艺条件下,锡基复合镀层材料各项性能更加优异,更适用于高容量电池的制作。  相似文献   

17.
徐兵兵  黄月文  王斌 《精细化工》2019,36(10):2009-2015
为了提高基体材料的防污能力,在基体表面制备了一种无氟超疏水复合涂层。首先,使用十六烷基三甲氧基硅烷(HDTMS)对二氧化硅(SiO_2)微纳米颗粒进行疏水改性,其次,将改性后的SiO_2颗粒与有机硅烷混合,利用硅烷的水解、聚合在基体材料的表面得到一层稳定的无氟超疏水复合涂层。采用FTIR、TGA、SEM、AFM和接触角测量仪对涂层的化学组成、表面微观结构和疏水性能进行表征。结果表明:复合涂层表面具有微纳米尺度的粗糙结构,并具有优异的自清洁性和耐磨损性;未磨损前接触角达151°,磨损100周次后接触角进一步提高至161°。  相似文献   

18.
将TiO2颗粒引入Ni-P合金镀液,采用化学镀的方法在黄铜上制备了(Ni-P)-TiO2复合镀层.利用扫描电镜、X-射线能谱仪、X-射线衍射仪和比表面积测试等检测手段,对(Ni-P)-TiO2复合镀层的形貌、化学组成、相结构以及其比表面积进行了分析.研究结果表明:(Ni-P)-TiO2镀层表面为均匀分布绒丝状复合物;T...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号