首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
T. Czyżewski 《Wear》1975,31(1):119-140
A theoretical analysis has been carried out of changes in the stress field in the elastohydrodynamic contact zone of cylindrical surfaces due to operating variables. Their possible role in rolling contact fatigue has been assessed by accelerated rolling contact fatigue tests. The results show that changes of the elastohydrodynamic pressure distribution in the contact zone associated with increase of the viscosity-velocity parameter induce considerable changes in the stress field in the contact zone. The poor correlation of rolling contact fatigue life with material effects according to elastohydrodynamic theory and the considerable changes in rolling contact fatigue life due to lubrication effects suggests that the explanation lies outside elastohydrodynamic theory and possibly in the theory of asperity lubrication.  相似文献   

2.
K. Fujita  A. Yoshida 《Wear》1977,43(3):301-313
Measurements of the residual stress and observations of the microstructure at the surface and in the subsurface of rollers were performed during rolling contact fatigue tests of annealed 0.45% carbon steel and case-hardened nickel-chromium steel rollers. Compressive residual stresses in annealed rollers were induced by the rolling contact. With case-hardened rollers they were induced by heat treatment prior to the rolling contact fatigue tests. After the rolling contact fatigue tests the compressive residual stresses on the surface of the annealed rollers and in the subsurface of the case-hardened rollers relaxed; a characteristic substructure was formed by the stress cycles, which caused surface failure. It was confirmed that the microcracks leading to surface failure initiate on the surfaces of annealed rollers and in the subsurface of case-hardened rollers.  相似文献   

3.
氮化硅陶瓷球滚动接触疲劳寿命模型   总被引:4,自引:0,他引:4  
针对球与圆柱接触模型中的陶瓷球,利用WEIBULL断裂统计方法导出球疲劳失效概率与寿命之间的关系方程,在相关额定寿命与最大接触应力的数值解基础上,基于最大主拉应力,构建氮化硅陶瓷球的滚动接触疲劳寿命与接触应力的数学模型.经与不同接触应力水平下的滚动接触疲劳寿命试验结果验证,表明该拉应力一寿命模型的正确性,从而验证了氮化硅陶瓷球的滚动接触疲劳失效源于最大主拉应力,而非基于最大切应力的设想.通过与L.P切应力一寿命模型预测结果的比较,表明拉应力一寿命模型适合于陶瓷球的接触疲劳寿命预测.  相似文献   

4.
润滑工况是滚动接触疲劳寿命的主要影响因素之一,而润滑剂、接触形式等因素都对润滑状态有所影响。采用新研制的三点接触纯滚动轴承球加速疲劳试验机,研究了被试球钢球和陶瓷球在润滑油N32润滑下的润滑性能,并计算了最小油膜厚度及润滑膜参数,分析了润滑状态。结果表明,所用的润滑油N32是合适的,被测试的钢球和陶瓷球工作在弹性流体动力润滑(EHL)状态。分析结果为钢球和陶瓷球的对比滚动接触疲劳性能试验提供了理论基础。  相似文献   

5.
This study investigates the residual stress distribution induced by hard machining and grinding and compares its impact on fatigue parameters. The residual stress distribution below hard turned and ground surfaces is investigated after a thermally damaged layer is removed. Fatigue parameters are computed based on the residual stress distribution to compare the impact of the residual stress distribution on the fatigue performance. Rolling contact fatigue tests are then performed to substantiate the computations. The effect of residual stresses on crack initiation depth is shown to be significant for the ground specimen. The maximum shear stress at crack initiation depth of the hard turned specimen is smaller than that of the ground specimen. Due to a significant increase in crack initiation life, the predicted rolling contact fatigue life of the hard turned specimen is longer than that of the ground specimen. The overall average in the ratios of predicted life to experimental life for the hard turned specimen is closer to 1 than that for the ground specimen. The results demonstrate that the hard turned specimen shows better rolling contact fatigue performance and better accuracy in the fatigue life prediction.  相似文献   

6.
An analysis of the main hypotheses concerning the critical stresses in rolling contact fatigue is presented. It is considered that none of these hypotheses correlates adequately with all the experimental aspects of the phenomenon of rolling contact fatigue. A new hypothesis is proposed; this hypothesis states that the equivalent stress is the critical stress in rolling contact fatigue. By considering the influence of the residual stresses it is shown how the optimum fatigue life in rolling contact can be achieved.  相似文献   

7.
《Wear》2006,260(4-5):567-572
In this note, the problem of the calibration of the Dang Van multiaxial fatigue criterion is addressed. The discussion is based on uniaxial fatigue tests performed with different stress ratios. Results show that the usual technique for calibrating the constants of the Dang Van criterion does not agree with experimental evidence, especially for negative stress ratios. For this reason, a different fatigue failure locus made of two straight line segments is proposed and typical three-dimensional rolling contact stress histories are analyzed using the traditional and proposed methods. Results show that the conventional technique does not agree with knowledge coming from shakedown approaches of rolling contact while the proposed method seems to constitute a more appropriate limit.  相似文献   

8.
《Wear》2002,252(9-10):811-823
In rolling contact fatigue, we have discovered that a flaking failure accompanied by cracks extending bi-directionally relative to the load-movement occurs on a defect-free surface due to the influence of indentations on a mating surface. We have also demonstrated, using stress analysis, the initiation of incipient cracks in the subsurface region resulting from indentations on the mating surface. In the present study, we focus on the stage of crack extension in the direction opposite to the load-movement. Firstly, mode II fatigue crack growth properties are investigated by conducting mode II fatigue testing, which has been previously presented. Subsequently, stress intensity factors at a subsurface crack are calculated by using a finite element method for the case of an indentation on the mating surface moving through the contact area. In this calculation, the configuration of the modeled crack is very similar to cracks actually observed. Based on the results of both the stress analysis and the cracking seen in actual tests, the mechanism for the development of opposite-directional cracking is proposed to be a mode II extension of an incipient subsurface crack.  相似文献   

9.
The rolling contact fatigue of sprayed alumina ceramics with a nominal composition of Al2O3–2.3 mass% TiO2 was studied with a two-roller test machine under a pure rolling contact condition with oil lubricant. The influence of undercoating of sprayed Ni-based alloy on the rolling contact fatigue was investigated. The failure mode of all sprayed rollers was spalling caused by subsurface cracking. The undercoating did not contribute to the improvement of the rolling contact fatigue life. The elastic modulus of the alumina sprayed layer evaluated with the nano-indentation method was around 85 GPa. The depths of the observed subsurface cracks corresponded approximately to the depths where the orthogonal shear stress or the maximum shear stress calculated with two-dimensional FEM became maximum.  相似文献   

10.
对含缺陷的未预滚压和预滚压车轮钢试样分别进行滚动接触疲劳试验,观察表面缺陷的形貌变化过程,分析预滚压和缺陷尺寸对轮轨材料滚动接触疲劳性能的影响。通过有限元方法分析缺陷附近材料的应力状态,通过多轴疲劳模型分析缺陷尺寸对滚动接触疲劳裂纹萌生规律的影响。试验结果表明:由于表层材料的塑性变形,未滚压车轮试样的缺陷尺寸随滚动周次的增加而减小;超过一定周次后,由于塑性变形不再累积,缺陷尺寸基本保持不变;预滚压处理通过减小表层材料的塑性变形,可抑制缺陷尺寸的减小,从而降低车轮试样的疲劳寿命;缺陷尺寸的增加会进一步降低预滚压试样的疲劳寿命;在油润滑条件下,预滚压和表面缺陷对车轮材料摩擦磨损性能没有显著影响。仿真结果表明,当缺陷尺寸从200μm增加至400μm,最大剪应力幅值从缺陷底部转移至缺陷中部,疲劳裂纹萌生位置也随之改变。  相似文献   

11.
氮化硅陶瓷球临界应力在很大程度上决定其滚动接触疲劳和磨损寿命.由于陶瓷材料的抗拉能力较弱,所以设想其滚动接触疲劳失效的临界应力为最大主拉应力.应用弹性接触力学和赫兹理论分析纯滚动条件下陶瓷球表面层接触应力,得到表面层最大主拉应力.针对理论计算值,设计相应的纯滚动接触疲劳实验.分析表明,理论值与实验结果趋于一致,从而证实最大主拉应力为氮化硅陶瓷球滚动接触疲劳失效的临界应力.计算结果为陶瓷球的滚动接触疲劳寿命分析提供理论基础.  相似文献   

12.
Silicon nitride (Si3N4) has been used in various rolling contact applications in turbomachinery, automotive and power industry. It is favoured to replace conventional steel due to its low density, low friction, corrosion resistance and good performance under extreme condition. However, a major limitation of its wider application is its high material and machining cost, especially the cost associated with the finishing process. In the present study, a low cost sintered and reaction bonded silicon nitride (SRBSN) is used to study the surface machining effects on its rolling contact performance. Attempt has been made to link the surface strengths of Si3N4 derived from half-rod and C-sphere flexure strength specimens to the rolling contact lifetimes of Si3N4 rod and ball specimens. The rolling contact fatigue tests are carried out on ball-on-rod and modified four ball machines. Three types of surfaces with coarse, fine and conventional finishing conditions are examined. Flexure strength tests on half-rod and C-sphere show an increasing surface strength from specimens with coarse, fine to conventionally machined conditions. During rolling contact fatigue test of as-machined specimens, there are no failures observed on both ball-on-rod and four ball tests after 100 million stress cycles. However, there is a trend of decreasing wear volumes measured on the contact path of rods and balls with coarse, fine and conventional conditions. In four ball test, spall failures are observed on pre-crack specimens. There is a trend of increasing rolling contact fatigue lifetime from pre-cracked specimens with coarse, fine to conventional machining conditions.  相似文献   

13.
Until now the estimation of rolling bearing life has been based on engineering models that consider an equivalent stress, originated beneath the contact surface, that is applied to the stressed volume of the rolling contact. Through the years, fatigue surface–originated failures, resulting from reduced lubrication or contamination, have been incorporated into the estimation of the bearing life by applying a penalty to the overall equivalent stress of the rolling contact. Due to this simplification, the accounting of some specific failure modes originated directly at the surface of the rolling contact can be challenging. In the present article, this issue is addressed by developing a general approach for rolling contact life in which the surface-originated damage is explicitly formulated into the basic fatigue equations of the rolling contact. This is achieved by introducing a function to describe surface-originated failures and coupling it with the traditional subsurface-originated fatigue risk of the rolling contact. The article presents the fundamental theory of the new model and its general behavior. The ability of the present general method to provide an account for the surface–subsurface competing fatigue mechanisms taking place in rolling bearings is discussed with reference to endurance testing data.  相似文献   

14.
It is well known that a thin phase-transformed white layer can be formed on component surfaces produced by hard machining. However, it is not clear as to how the white layer affects component performance, for example, in rolling contact fatigue. This study aims to determine the effects of white layer and associated residual stress on rolling contact stresses and strains. It is nearly impossible for an experimental study to identify the effects of white layer alone on rolling contact. Furthermore, small-scale contact stresses and strains (less than 30 μm) of the phase-transformed region are difficult to measure using the current experimental techniques. Therefore, a finite element analysis simulation model of rolling contact incorporating machining-induced surface integrity has been developed in this study. Three cases were investigated to decouple the effects of surface integrity factors: surface with white layer only, surface with residual stress only, and surface with white layer and residual stress. The simulation results show that distinct material properties of the white layer significantly influence the magnitudes and distributions of near-surface stresses and strains instead of those in the subsurface. Furthermore, it can be inferred that the white layer would affect near-surface fatigue damage instead of subsurface fatigue damage. The simulated near-surface fatigue damage mechanisms have been substantiated by the fatigue test data.  相似文献   

15.
The present, study extends the transient EHL point contact model and subsurface stress field calculation model to examine the influence of a surface dent on interior stresses in an EHL point contact under various slide-to-roll conditions. Results revealed that under the pure rolling condition the effect of a surface dent on the stresses is quite negligible. The presence of a shallow surface dent is unlikely to reduce the contact fatigue, life so long as pure rolling motion and good lubrication conditions are maintained. Unfortunately, the same cannot be said of the contact if it is operating in the boundary lubrication regime.

When sliding was introduced, the surface indentation generated significantly high pressure spikes with a strong directional preference. These high-pressure spikes cause severe stress concentrations either below the trailing edge of the dent, if it moves faster than the opposing surface, or below the leading edge of the dent, if it moves slower than the opposing surface. The maximum von Mises stress moved close to the surface and significantly increased in value as compared to the smooth surface solution. For the case of simple sliding, the maximum von Mises stress is even greater than the value calculated for the boundary lubrication case.

In regard to maximum tensile principle stresses, the presence of a dent increased the stresses only marginally over the smooth surface solutions. It is unlikely that surface indentation would significantly reduce the contact fatigue life due to Mode 1-type crack initiation.  相似文献   

16.
VOLUME DEFECT FATIGUE FAILURE OF CERAMIC BALLS UNDER ROLLING CONDITION   总被引:2,自引:1,他引:2  
A newly developed pure rolling fatigue test rig with three contact points is used to test the rolling contact fatigue properties of silicon nitride ceramic balls. Ball surfaces are examined after failure with optical microscopy and scanning electron microscopy. The failure cause,fatigue phenomenon and mechanics are analyzed. The research shows that subsurface cracks play a dominant role in the formation of spalling failure. These cracks originated from volume defects of the material and propagate,to form elliptical fatigue spalls under the action of principal tensile stresses. The principal tensile stress increases with increasing contact load,causing spall formation and reduction of rolling contact life. The greater the principal tensile stress is,the more severe the peeling of near surface is. Under the same condition,the closer volume defects are to the surface,the more likely failure occurs,the shorter the rolling contact life is.  相似文献   

17.
Several 2D and 3D numerical models have been developed to investigate rolling contact fatigue (RCF) by employing a continuum damage mechanics approach coupled with an explicit representation of microstructure topology. However, the previous 3D models require significant computational effort compared to 2D models. This work presents a new approach wherein efficient computational strategies are implemented to accelerate the 3D RCF simulation. In order to reduce computational time, only the volume that is critically stressed during a rolling pass is modeled with an explicit representation of microstructure topology. Furthermore, discontinuities in the subsurface stress calculation in the previously developed models for line and circular contact loading are removed. Additionally, by incorporating a new integration algorithm for damage growth, the fatigue damage simulations under line contact are accelerated by a factor of nearly 13. The variation in fatigue lives and progression of simulated fatigue spalling under line contact obtained using the new model were similar to the previous model predictions and consistent with empirical observations. The model was then extended to incorporate elastic–plastic material behavior and used to investigate the effect of material plasticity on subsurface stress distribution and shear stress–strain behavior during repeated rolling Hertzian line contact. It is demonstrated that the computational improvements for reduced solution time and enhanced accuracy are indispensable in order to conduct investigations on the effects of advanced material behavior on RCF, such as plasticity.  相似文献   

18.
There has been a considerable body of research concerned with predicting the service life of rolling contact components. It is well known that the prevailing cause of failure in rolling contact components is fatigue crack. Although the trend has been toward the use of surface integrity in fatigue life prediction, one aspect missing in most models has been a consideration of the residual stress scatter in the subsurface. Since the fatigue life of a manufactured component depends on its weakest point, the local extreme is most relevant for the fatigue life prediction. This study thus incorporates the residual stress scatter into the rolling contact fatigue life model to predict the fatigue life closer to the experimental life. It is noted that residual stresses vary significantly at the same depth. After the residual stress scatter is incorporated into the model, the predictions agree well with the experimental lives.  相似文献   

19.
K. Fujita  A. Yoshida 《Wear》1981,67(2):187-200
Experiments with pairs of rollers of different hardnesses designed to assess the effect of hardness difference on surface durability and surface failure are described. Sliding-rolling contact fatigue tests were performed with combinations of thermally refined, through-hardened and induction-hardened 0.45% C steel rollers. The mode of failure is discussed in relation to the hardness difference between the rollers and the presence of residual stresses. The effect of hardness on the modulus of elasticity was also examined. An empirical equation was devised to describe the relationship between the rolling contact fatigue limit under hertzian stress and the surface hardness.  相似文献   

20.
Heikki Sundquist 《Wear》1981,66(1):111-123
The rolling contact fatigue of case-hardened steel surfaces in lubricated heavily loaded contact was studied. Three different case-hardening treatments were tested with a ratio of slide to roll of ?5%. Other ratios of slide to roll were used to determine the effect of tangential traction on the rolling contact fatigue endurance. When the actual contact width was measured after testing, the scatter of the fatigue results was reduced. The depth of the maximum plastic strain was determined by measuring the hardness before and after testing and was found to correspond to the occurrence of the lowest ratio of the critical shear stress to the amplitude of the load-induced orthogonal shear stress. The role of residual stresses in rolling contact fatigue is discussed. It was found that a more detailed knowledge of lubricant behaviour in heavily loaded contacts is needed to reveal the true distribution of tangential traction on the contact surface. This affects the angle of the plane and the value of the maximum amplitude of the shear stress beneath the contact zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号