首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
依据Thermo-Calc计算设计了一种成分为Fe-0.8C-2Mn-1.5Si-1.5Cr-0.25Mo-0.25Ni-1Al-0.25Co-0.1V可用于制造钢丝的纳米贝氏体钢,使用热膨胀相变仪、扫描电镜(SEM)、X射线衍射(XRD)、透射电镜(TEM)和拉伸实验等手段研究了等温淬火温度和时间对其组织和力学性能影响。结果表明:这种纳米贝氏体钢低温等温淬火后的组织,由纳米结构的贝氏体铁素体板条、残余奥氏体和少量的马氏体组成。随着等温淬火温度的提高相变速率随之提高,贝氏体铁素体的体积分数增大。随着等温淬火时间的延长,贝氏体铁素体的体积分数增大而过冷奥氏体的量减少,在室温下生成的块状M/A岛的尺寸减小和体积分数降低,碳的配分使过冷奥氏体的稳定性提高,M/A岛中的脆性马氏体比例大幅度降低,拉伸断口由混合型断裂向准解理断裂转变。将这种钢在230℃保温48 h后强塑性匹配最佳,其抗拉强度和屈服强度分别达到1625和1505 MPa,延伸率达到34.5%。  相似文献   

2.
用Gleeble1500热模拟试验机进行单轴热压缩实验,研究了过共析钢在过冷奥氏体形变过程中的组织演变规律.结果表明:过冷奥氏体变形可以抑制网状渗碳体的形成,过冷奥氏体动态相变只得到珠光体组织,在继续变形过程中珠光体发生动态球化,得到超细化(α θ)复相组织.提高形变温度使过冷度降低,阻碍过冷奥氏体动态相变的进行;而降低应变速率使变形时间延长,有利于过冷奥氏体动态相变和珠光体动态球化的进行,但得到的超细化复相组织较为粗人.  相似文献   

3.
低碳钢形变强化相变的组织细化   总被引:17,自引:1,他引:16  
利用热模拟压缩变形试验研究了应变速率,形变温度和应变量对Q235级别低碳20钢过冷奥氏体形谱强化相谱的组织演变规律,探讨了了奥氏体昌粒控制对形变强化相变的影响,分析了组织细化的原因,结果表明,形变强烈促进过冷奥氏体相变,过冷奥氏体在800-740℃温度范围名义变形量为70%,应变速率为Is^-1,可获得了平均截径为2-3um及小于2um的铁索体细晶与珠光体混合组织,还观察到在局部细小铁素体晶粒的晶界上渗碳体以离异珠光体形式析出的现象,适当控制奥氏体晶粒尺寸有利于形变强化强晶组织的获得。  相似文献   

4.
采用实验室热轧机对高硅和低硅TRIP钢(A钢和B钢)进行控制轧制试验,研究了热轧后等温淬火对热轧TRIP钢组织性能的影响.通过显微组织观察,力学性能分析,探讨了两种钢的应变诱导相变和相变诱发塑性行为.研究表明:A、B钢均能够获得铁素体、贝氏体和大量稳定残余奥氏体的混合组织,具有较高的力学性能;残余奥氏体稳定性是提供TRIP的重要因素,B钢中贝氏体和残余奥氏体较多,相变诱发塑性效果更好,其性能优于A钢;等温时间影响热轧TRIP钢的力学性能,随等温时间的延长,A、B钢的伸长率增加,等温时间超过120 min,导致碳化物析出,残余奥氏体的稳定性降低;B钢经热轧后在400 ℃等温25 min,抗拉强度和伸长率分别达到了784 MPa和36%的最高值.  相似文献   

5.
贝氏体相变区等温停留对低合金TRIP钢相组成的影响   总被引:2,自引:0,他引:2  
用膨胀法及XRD法研究了经780℃临界间加热后20Mn2SiMoV钢在贝氏体转变区域等温温度和等温时间对相组成、残余奥氏体含碳量(CA残)及其机械稳定性的影响。结果表明,随着等温温度的提高,残余奥氏体量(体积分数φA残,下同)增加、含碳量减小;随着等温时间的增加.残余奥氏体先增加后减少;在没有析出碳化物的前提下,残余奥氏体含碳量随着等温时间的增加而增加,在380℃等温50min时残余奥氏体达到最高(22%);在340℃等温9.2min时奥氏体的机械稳定性最好。  相似文献   

6.
将低温贝氏体相变前淬火得到由马氏体、贝氏体铁素体和残余奥氏体组成的纳米贝氏体钢,使用扫描电镜(SEM)、X射线衍射(XRD)和透射电镜(TEM)等手段观察在不同温度回火的纳米贝氏体钢的显微组织和硬度变化,研究了预相变马氏体对纳米贝氏体钢热稳定性的影响。结果表明:含有马氏体的纳米贝氏体钢在中低温(473~773 K)回火后其硬度比回火前的高,回火温度高于823 K其硬度迅速下降到266.2HV(923 K)。预形成的马氏体在473~573 K回火后向附近的残余奥氏体排碳,后者的碳含量提高到峰值1.52%,提高了残余奥氏体的热稳定性,延迟后者在高温时的分解,从而提高了纳米贝氏体钢的高温热稳定性;回火温度高于723 K则残余奥氏体分解成碳化物,贝氏体铁素体粗化、回复形成新的铁素体晶粒。  相似文献   

7.
对钛微合金化TRIP钢进行连续冷却转变曲线的测定,分析轧制与冷却工艺对其组织与性能的影响。结果表明:实验钢的奥氏体/铁素体、奥氏体/马氏体相变点分别在500~650℃和450℃左右;组织由铁素体/贝氏体及少量残余奥氏体组成;随着终轧温度的升高,实验钢的屈服强度和抗拉强度有所降低;随着空冷结束温度的降低,实验钢的屈服强度降低;当终轧温度和空冷结束温度分别为796℃和722℃时,实验钢的屈服强度,抗拉强度和强塑积分别为661,888MPa和25042MPa·%,其对应组织为细小的铁素体及板条贝氏体,铁素体基体上存在大量细小的析出物。  相似文献   

8.
加热速度对T91铁素体耐热钢奥氏体形成的影响   总被引:1,自引:0,他引:1  
采用高精度差分膨胀仪对不同加热速度(10~6000 K/min)下T91铁素体耐热钢的奥氏体形成动力学规律进行了系统研究.研究表明:加热速度显著影响T91钢的奥氏体形成开始温度Ac1、结束温度Ac3、相变速率及淬火后的组织.加热速度愈大,Ac1和Ac3温度愈高,奥氏体相变速率愈快,奥氏体形成温度区间愈窄;相对较慢和较快的加热速度对淬火后的组织都有不利的影响.  相似文献   

9.
低碳钢超细晶铁素体的形成   总被引:1,自引:1,他引:0  
将含碳量(质量分数)为0.057%和0.18%的低碳钢在不同过冷度、变形温度、变形速率和变形量的条件下进行热模拟实验,研究了含碳量和热变形条件对超细晶粒形成的影响.结果表明,变形前快速冷却(20℃/s)至Ar3以上附近温度并进行超过50%变形量的变形,能强烈促进过冷奥氏体形变诱发铁素体相变,铁素体在奥氏体晶内平行的变形带上形核,并发生动态回复和再结晶,从而使组织细化.形变诱发的相变过程由碳的扩散所控制,当钢的含碳量比较高时,小过冷度、大变形量和中等变形速率有利于铁素体相变,晶界碳化物的析出能够抑制铁素体晶粒的长大,因而高碳含量钢表现出更好的细化晶粒效果.  相似文献   

10.
针对贝氏体研究中的超级贝氏体组织,设计了试验用钢70MnSi2CrMo,经低温等温处理,获得贝氏体铁素体+残余奥氏体的组织,利用X射线衍射XRD、扫描电子显微镜SEM、透射电子显微镜TEM等仪器对其进行相组成和形态的检测分析.结果表明:在马氏体转变开始温度Ms点稍上的中低温区等温处理,贝氏体铁素体沿γ相晶界转变,无碳化物析出;α相转变排碳导致成分起伏,α/γ交界处过冷奥氏体稳定性增加,难以转变成马氏体;贝氏体铁素体的转变特征、过饱和的碳浓度、高密度位错、以及纳米尺寸相界面和亚结构等,影响着超级贝氏体钢的力学性能.  相似文献   

11.
为研究贝氏体区等温时间对热轧TRIP钢残余奥氏体和力学性能的影响,采用金相显微镜、X射线衍射、拉伸实验等方法对3种不同贝氏体区等温时间下制备的热轧TRIP钢进行分析.结果表明:随着贝氏体等温时间的延长,残余奥氏体量减少而残余奥氏体碳含量增加,残余奥氏体晶粒尺寸及残余奥氏体形貌变化不大;热轧TRIP钢的力学性能随着贝氏体...  相似文献   

12.
本文采用SCAY-1型数字式残余奥氏体测定仪测量了试样的残余奥氏体量,揭示了等温时间与残余奥氏体含量之间的关系,并且用JEM-100CX透射电子显微镜观察了残余奥氏体的形貌,发现残余奥氏体大多以层片状存在于贝氏体/贝氏体(B/B)边界或马氏体/贝氏体(M/B)边界上。  相似文献   

13.
用Formastor-FII相变仪研究了钛微合金化TRIP在不同开冷温度下的连续冷却相变,建立了实验钢的连续冷却转变曲线,分析了铁素体、贝氏体及马氏体的相变规律.结果表明,随着冷却速率的增加,实验钢依次经过铁素体、贝氏体及马氏体相区,在较宽的冷却速率范围内,均可获得贝氏体及马氏体组织,其Ms点为450℃左右;随着开冷温度的降低或冷却速率的提高,实验钢的铁素体及贝氏体开始转变温度降低,抑制了铁素体及贝氏体相变;随着冷却速率的增加,实验钢的显微组织由铁素体+粒状贝氏体逐步转变为板条贝氏体+板条马氏体及板条马氏体组织;当冷却速率较低时,铁素体由晶内铁素体和晶界铁素体组成,晶内铁素体形核质点为复杂的氧化物及硫化物.  相似文献   

14.
利用膨胀法并配合光学及电子显微分析,较为系统地研究了60Si2Mn钢在连续加热条件下的相变规律及特点;测定了与其相应的奥氏体形图。结果表明,钢中珠光体向奥氏体的转变是在一个温区间内完成的,该区间随加热速度的增加,逐渐变宽并移向高温区;钢中粒状合金渗碳体。在Ac3温度以上奥氏体可与M3C颗粒在较宽温度区间内共存。  相似文献   

15.
对一种钒微合金化TRIP钢进行冷轧连续退火,研究了钢的组织特征和力学性能。结果表明,贝氏体基TRIP钢的组织由贝氏体/马氏体和少量的残余奥氏体组成。随着贝氏体区等温时间的延长,钢的抗拉强度下降,屈服强度和延伸率提高。残余奥氏体由块状向薄膜状转变,体积分数增加,薄膜状残余奥氏体主要分布在贝氏体板条间,厚度为50-90 nm。在400℃等温180 s连续退火钢板呈现出相对低抗拉强度(960 MPa)、高屈服强度(765 MPa)和高延伸率(22.0%)的特性,而且加工硬化指数(0.20)、各向异性指数(0.94)和强塑积(21120 MPa.%)也较为优良。  相似文献   

16.
采用Gleeble-3500热模拟试验机测量了10CrNi5MoV钢焊缝金属在不同冷却速率下奥氏体连续冷却过程中的温度-膨胀曲线,利用杠杆定律,得到了不同冷却速率下相变动力学曲线,分析了冷却速率对焊缝金属相变的影响。结果表明,不同冷却速率下焊缝金属的奥氏体转变动力学曲线均呈S型,冷却速率为60 ℃/s、30 ℃/s、15 ℃/s时,奥氏体转变速率与温度的曲线呈单峰状,冷却速率为6 ℃/s,奥氏体转变速率与温度的曲线表现为贝氏体、粒状贝氏体相变的双峰转变。   相似文献   

17.
将共析钢在600-700℃的过冷奥氏体状态下进行单轴热压缩,获得了亚微米级别等轴铁素体 纳米级别弥散分布球化渗碳体的复相组织,其组织演变经历动态相变、片层渗碳体球化、铁素体动态再结晶和纳米级别渗碳体颗粒析出等过程.随着形变温度的降低,过冷度增加,相变动力学过程加快.片层渗碳体的球化程度由球化时间和球化速度控制,形变温度升高使渗碳体球化速度加快,但是相变开始时间及动力学延迟使得用于渗碳体球化和熟化的时间相应缩短,导致球化程度降低.铁素体再结晶和等轴化过程则主要受位错迁移、渗碳体颗粒钉扎的影响,形变温度升高导致较高的等轴化发展速度.  相似文献   

18.
对一种X100管线钢进行热模拟试验,研究了过冷奥氏体的相变规律,提出了一种得到以粒状贝氏体+板条贝氏体为主的混合组织的控轧控冷工艺制度,分析了精轧变形量、冷却速度及终冷温度对实验钢微观组织的影响。结果表明,随着变形量的增大实验钢的微观组织逐渐细化,高强度的板条贝氏体含量减少而粒状贝氏体含量增多;随着冷却速度的增加和终冷温度的降低实验钢组织中的板条贝氏体含量明显提高,组织也逐渐细化;组织中板条贝氏体含量较高时实验钢具有较高的强度,但过多的板条贝氏体和针状M/A岛对材料的韧性造成不利的影响。  相似文献   

19.
在Gleeble-1500热模拟试验机上研究了20SiMn3NiA钢在不同连续冷却条件下相和组织变化,用热膨胀法测定了该钢的连续冷却转变曲线(动态CCT曲线)。研究结果表明,20SiMn3NiA钢中的Mn、Ni、Si等合金元素能有效地阻止铁素体和珠光体的形成,故20SiMn3NiA钢的过冷奥氏体连续冷却转变曲线只有马氏体和贝氏体相变区。当临界冷却速度大于1℃/s时,20SiMn3NiA钢就可以获得板条状马氏体组织,且随着冷却速度的增大,马氏体组织变得越来越细。与静态CCT曲线相比,形变使动态CCT曲线的Ms点升高,奥氏体稳定性降低,形变细化了马氏体和贝氏体组织,使20SiMn3NiA钢在1℃/s的冷却速率下产生较高的强度。  相似文献   

20.
本文研究了超高碳钢(1.40wt%C,1.50wt%Cr,1.50wt%Al)等温淬火贝氏体形貌及形成机制。在250℃~350℃温度范围内等温淬火研究结果表明,随着等温温度升高,贝氏体的孕育期缩短,贝氏体片的长度变短,厚度增加,呈现侧向长大特征,贝氏体转变完全程度降低。贝氏体转变结束后,继续延长等温时间,残余奥氏体发生了渗碳体和铁素体分解。在贝氏体转变较少的试样中,在随后进行的空冷过程中贝氏体将继续形成。经分析认为,贝氏体转变由应力与原子扩散两种因素控制;等温温度较低时,应力占主导地位,碳原子的扩散起辅助作用,贝氏体切变形成,呈薄片状;随等温温度的升高,扩散作用增大,贝氏体长大,出现侧向增厚,长度变短的组织变化特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号