首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Safety demonstration tests using the HTTR (High Temperature Engineering Test Reactor) are now in progress in order to verify the inherent safety features and to improve safety designing and analysis technologies for future HTGR (high temperature gas-cooled reactor). Coolant flow reduction test is one of the safety demonstration tests for the purpose of demonstration of inherent HTGR safety features in the case that coolant flow is reduced by tripping of helium gas circulators. If reactor core element temperature and core internal structure temperature during abnormal events are estimated by numerical simulation with high-accuracy, developed numerical simulation method can be applied to future HTGR designing efficiently. In the present research, three-dimensional in- and ex-vessel thermal-hydraulic calculations for the HTTR are performed with a commercially available thermal-hydraulic analysis code “STAR-CD®” with finite volume method. The calculations are performed for normal operation and coolant flow reduction tests of the HTTR. Then calculated temperatures are compared with measured ones obtained in normal operation and coolant flow reduction test. As the result, calculated temperatures are good agreement with measured ones in normal operation and coolant flow reduction test.  相似文献   

2.
Safety demonstration tests were conducted on the 10 MW High Temperature Gas-cooled Reactor-Test Module (HTR-10) to verify the inherent safety characteristics of modular High Temperature Gas-cooled Reactors (HTGRs) as well as to obtain the transient data of reactor core and primary cooling system for validation of HTGR safety analysis models and codes. As one of these safety demonstration tests, a simulated anticipated transient without scram (ATWS) test called loss of forced cooling by tripping the helium circulator without reactor scram was carried out at 3 MW power level on October 15, 2003. This paper simulates and analyzes the power transient and the thermal response of the reactor during the test by using the THERMIX code. The analytical results are compared with the test data for validation of the code.Owing to the negative temperature coefficient of reactivity, the reactor undergoes a self-shut down after the stop of the helium circulator; the subsequent phenomena such as the recriticality and power oscillations are also studied. During the test a natural circulation loop of helium is established in the core and the other coolant channels and its consequent thermal response such as the temperature redistribution is investigated. In addition, temperatures of the measuring points in the reactor internals are calculated and compared with the measured values. Satisfactory agreements obtained from the comparison demonstrate the basic applicability and reasonability of the THERMIX code for simulating and analyzing the helium circulator trip ATWS test. With respect to the safety features of the HTR-10, it is of most importance that the maximum fuel center temperature during the test is always lower than 1600 °C which is the limited value for the HTGR.  相似文献   

3.
In Pb–Bi-cooled direct contact boiling water small fast reactor (PBWFR), steam is generated by direct contact of feedwater with primary Pb–Bi coolant above the core, and Pb–Bi coolant is circulated by steam lift pump in chimneys. Safety design has been developed to show safety features of PBWFR. Negative void reactivity is inserted even if whole of the core and upper plenum are voided hypothetically by steam intrusion from above. The control rod ejection due to coolant pressure is prevented using in-vessel type control rod driving mechanism. At coolant leak from reactor vessel and feedwater pipes, Pb–Bi coolant level in the reactor vessel required for decay heat removal is kept using closed guard vessel. Dual pipes for feedwater are employed to avoid leak of water. Although there is no concern of loss of flow accident due to primary pump trip, feedwater pump trip initiates loss of coolant flow (LOF). Injection of high pressure water slows down the flow coast down of feedwater at the LOF event. The unprotected loss of flow and heat sink (ATWS) has been evaluated, which shows that the fuel temperatures are kept lower than the safety limits.  相似文献   

4.
Flow rate distribution and total pressure loss of a coolant flow through a control rod channel in the Very High Temperature Gas Cooled Reactor (VHTR) were analytically and experimentally examined. Helium gas of atmospheric temperature was used in the experiment; and the total mass flow rates ranged 0.005~0.05 kg/s and the gas pressures ranged 0.14~0.42 MPa. Pressure losses and flow rates in the control rod channel were measured. An analysis was made by using a one-dimensional flow network model for the inner and outer channels and the gap. The analytical results agreed fairly well with the experimental results on the flow rate distribution and the total pressure loss in the control rod channel.  相似文献   

5.
Safety demonstration tests on the 10 MW high temperature gas-cooled reactor test module (HTR-10) were conducted to verify the inherent safety features of MHTGRs and to obtain the core and primary cooling system transient data for validation of safety analysis codes.Two simulated anticipated transients without scram (ATWS) tests, lose of forced cooling by trip of the helium blower and reactivity insertion via control rod withdrawal were performed. This paper describes the tests with detailed test method, condition and results.Calculated results show that the strongly negative temperature coefficient causes reactor power to closely follow heat removal levels. Maximum fuel temperature changes are limited by the large core heat capacity to below 1230 °C during two tests.The test of tripping the helium circulator ATWS test was conducted on October 15, 2003. Although none of 10 control rods was moved, the reactor power immediately decreased due to the negative temperature coefficient. After about 50 min, the reactor became criticality again. Finally, the reactor power went to a stable level with about 200 kW.The test of reactivity insertion ATWS test was conducted two times. Following the control rod withdrawal, the reactor power increased rapidly, the maximum power level reached to 5037 and 7230 kW from the initial power of 3000 kW in accordance with reactivity insertion of $ 0.136 and 0.689, respectively. After the reactivity introduced was compensated by means of the strong negative reactivity feedback effect, the reactor went to subcritical and the power decreased.  相似文献   

6.
Abstract

To confirm the safety of the High Temperature Engineering Test Reactor (HTTR) facility which is being constructed as the first high temperature gas cooled reactor in Japan, the representative abnormal reactivity events assumed in the safety analysis of the HTTR were analyzed. The HTTR is a graphite moderated and He-gas-cooled reactor with thermal power of 30 MW, inlet coolant temperature of 395°C and outlet coolant temperature of 950°C.

This report presents the analytical results of two representative events, “Abnormal control rod withdrawal from a subcritical condition” and “Abnormal control rod withdrawal during the full power operation”, showing that the safety of the HTTR is secured in conformity with the unique features of the HTTR with respect to the maximum fuel temperature, which is a key factor for the safety criteria.

The results of the safety analysis could demonstrate the safety of the HTTR facility with respect to abnormal reactivity events postulated in the HTTR, showing that the maximum fuel temperature is lower than the limit of the maximum fuel temperature of 1,600°C.  相似文献   

7.
车济尧 《中国核电》2014,(3):261-264
三门核电AP1000反应堆在满功率情况下发生汽轮机故障停机事件时,通过快速降功率系统、旁排系统和棒控系统等的快速响应,一回路的参数不会突破安全限值,避免了反应堆停堆,降低了该瞬态对反应堆冷却剂系统的冲击。文章对停机不停堆的实现方式和运行特点进行了详细的分析和阐述,以帮助电站人员对停机不停堆的理解,并提高他们面临瞬态的响应能力。  相似文献   

8.
A High Temperature Gas-cooled Reactor (HTGR) is particularly attractive due to its capability of producing high-temperature helium gas and to its inherent safety characteristics. The High Temperature Engineering Test Reactor (HTTR), which is the first HTGR in Japan, achieved its rated thermal power of 30 MW and reactor-outlet coolant temperature of 950°C on 19 April 2004. During the high-temperature test operation which is the final phase of the rise-to-power tests, reactor characteristics and reactor performance were confirmed, and reactor operations were monitored to demonstrate the safety and stability of operation. The reactor-outlet coolant temperature of 950°C makes it possible to extend high-temperature gas-cooled reactor use beyond the field of electric power. Also, highly effective power generation with a high-temperature gas turbine becomes possible, as does hydrogen production from water. The achievement of 950°C will be a major contribution to the actualization of producing hydrogen from water using the high-temperature gas-cooled reactors. This report describes the results of the high-temperature test operation of the HTTR.  相似文献   

9.
A calculation code was developed to evaluate the thermohydraulic performance of a coolant flow through a control rod channel in a very high temperature gas cooled reactor (VHTR) and a high temperature engineering test reactor (HTTR). A one-dimensional flow network model was employed in the present calculation code. The calculated results agreed well with the experimental ones on the flow rate distribution and the total pressure loss in an isothermal coolant flow. The thermohydraulic characteristics of the HTTR control rod channel were evaluated by the code under various conditions, including the normal operating conditions of a HTTR.  相似文献   

10.
To identify a safety margin in the case of an inadvertent control rod withdrawal event of a 65-MWt advanced integral reactor, safety analysis has been carried out by using the Transients And Setpoint Simulation/System integrated Modular Reactor (TASS/SMR) code. The diverse initial conditions, various reactivity insertion rates into a core, different combinations of a reactivity feedback and three different speed modes of a main coolant pump (MCP) have been considered to identify the effect of each parameter on a critical heat flux ratio (CHFR) and the initial condition resulting in the worst consequences from the viewpoint of the minimum critical heat flux ratio. The analysis results show that the worst consequences occur when a reactivity of 17.61 pcm/s is inserted into a core at an initial condition of a 45% initial core power, high coolant temperature at the core inlet position, low system pressure and a thermal design flow. It is also assumed that the least negative fuel and moderator temperature coefficients are applied. The safety parameters such as the minimum critical heat flux ratio and the system pressure are maintained within the safety limits and the reactor is safely transferred to a safe condition by a functioning of the safety systems of the advanced integral reactor.  相似文献   

11.
在高通量工程试验堆(HFETR)中,3He回路内气体压力变化会向反应堆引入反应性,进而影响到HFETR的运行安全。本文利用蒙特卡罗(MCNP)程序计算了3He辐照考验装置反应性变化速率,并利用RELAP5程序对3He屏失压与HFETR 1根控制棒失控提出叠加事故进行了分析。结果表明,正常工况下,3He回路辐照试验不影响HFETR 正常运行;3He屏失压事故与HFETR事故工况叠加不会影响HFETR安全。   相似文献   

12.
The Very High Temperature Reactor (VHTR) is a Generation IV nuclear reactor that is currently under design. During the design process multiple studies have been performed to develop safety codes for the reactor. Two major accidents of interest are the Pressurized Conduction Cooldown (PCC), and the Depressurized Conduction Cooldown (DCC) scenario. Both involve loss of forced coolant to the core, except the latter involves a pressure loss in the main coolant loop. During normal operation a circulator pumps the coolant into the upper plenum and down through the core, but following a loss of forced coolant the natural convection causes the flow to reverse to go through the core into the upper plenum. Computer codes may be developed to simulate the phenomenon that occurs in a PCC or DCC scenario, but benchmark data is needed to validate the simulations; previously there were no experimental test facilities to provide this. This study will cover the design, construction, and preliminary testing of a 1/16th scaled model of a VHTR that uses Particle Image Velocimetry (PIV) for flow visualization in the upper plenum. Three tests were run for a partially heated core at statistically steady state, and PIV was used to generate the velocity field of three naturally convective adjacent jets; the turbulent mixing of the jets was observed. After performing a sensitivity analysis the flow rate of a single pipe was extracted from the PIV flow field, and compared with an ultrasonic flowmeter and analytic flow rate. All the values lied within the uncertainty ranges, validating the test results.  相似文献   

13.
使用REALP5/SCDAP分析了IRIS堆汽轮机停机和部分失流事故导致的严重事故进程及缓解措施。分析结果表明IRIS堆内水装量大,使得堆芯较长时间处于淹没状态,事故发生后近7个小时堆芯开始裸露,10小时后堆芯开始损坏。对于不卸压不安注的情况,压力容器会完全干涸,堆芯和蒸汽发生器之间形成蒸汽自然循环流动,堆芯温度缓慢升高,低熔点的控制棒金属首先熔化落入下腔室并加热下封头,使得下封头底部区域发生蠕变断裂失效。在不卸压的情况下一个上充泵的安注流量就能够缓解事故。  相似文献   

14.
Several important PBMR reactivity insertion transients have been simulated by means of the dynamic reactor code TINTE (Time-dependent Neutronics and Temperatures). These transients include total control rod removal during normal operating conditions, cold zero power (CZP) conditions and hot zero power (HZP) conditions, as well as Reserve Shut-down System (RSS) removal during the cold zero power conditions. According to the TINTE results, the worst control rod removal scenario is the total control rod removal during hot zero power conditions in a postulated event with the power conversion unit (PCU) starting up and with continual operation without a trip. The amount of reactivity insertion by the RSS removal is much greater than the reactivity insertion by control rod removal. The event was analyzed but the RSS during the cold zero power conditions is a Beyond Design Basis Accident (BDBA). This paper presents the methodology followed to model these transient events with the TINTE code, as well as total power, maximum and average fuel temperatures and case comparison results. It is also shown that the maximum fuel temperatures for all of the Design Basis Accidents (DBA) are within acceptable safety limits.  相似文献   

15.
The dynamic behavior of a 1,000 MW th sodium-cooled oxide-fuel fast breeder reactor was analyzed. To determine the stability of fast reactors, a new analytical model was introduced. The transfer function of EBR-I Mark IV calculated therewith agreed closely with experimental data, and the stability study on the model case was carried out with this model. The present analysis was extended to cover such accidents as reactivity insertion, coolant flow coast down and loss of coolant flow, which are commonly considered in fast reactor safety analysis, and further, the influence of changes in reactivity coefficients upon the consequences of such accidents was also surveyed.

The results indicated no appearance of instability in large fast reactors under credible conditions, and that fuel center melting should occur prior to sodium boiling in the case of a reactivity insertion accident, when the Doppler coefficient should have great influence, in contrast to the sodium coefficient, whose effect should be small. It was also ascertained that there should be no fear of coolant flow coast down from pumping power failure if the scram system operates normally, and that in the event of channel blockage sodium should begin to boil within a few seconds at about two thirds of core height. Compared to the case of reactivity insertion, the effects of the individual coefficients were found to act in the inverse direction in these latter cases.  相似文献   

16.
Nuclear safety analysis remains of crucial importance for both the design and the operation of nuclear reactors. Safety analysis usually entails the simulation of several selected postulated accidents, which can be divided into two main categories, namely reactivity insertion accident (RIA) and loss of flow accident (LOFA). In this paper, thermal-hydraulic simulations of fast LOFA accident were carried out on the new core configuration of the material test research reactor NUR. For this purpose, the nuclear reactor analysis PARET code was used to determine the reactor performance by calculating the reactor power, the reactivity and the temperatures of different components (fuel, clad and coolant) as a function of time. It was observed that during the transient the maximum clad temperature remained well below the critical temperature limit of 110 °C, and the maximum coolant temperature did not exceed the onset of nucleate boiling point of 120 °C. It is concluded that the reactor can be operated at full power level with sufficient safety margins with regard to such kind of transients.  相似文献   

17.
Since the late 1970'-s the research and development program on the high temperature gas-cooled reactor (HTR) has been carried out in China. The 10 MW High Temperature Gas-cooled Reactor-Test Module (HTR-10) reached first criticality in 2000 and was put into full power operation in 2003. Six safety demonstration tests were done on the HTR-10. The project of the HTR-10 with a gas turbine cycle is underway. The project of the HTR demonstration plant with a power of around 150 MWe (HTR-PM) is planned. In this paper the HTR development in China is briefly described.  相似文献   

18.
在中国实验快堆(CEFR)物理启动过程中,对CEFR压力反应性和流量反应性效应进行了测量研究,并进行初步的误差分析。实验中堆芯反应性测量分别使用周期法和逆动态法。实验结果表明:CEFR压力反应性为正反馈,主容器覆盖气体压力从5 kPa升高至50 kPa过程中引入约+20 pcm反应性,升、降压力过程测量结果的相对偏差小于10%;CEFR流量反应性为负反馈,一回路泵转速从150 r/min升高至989 r/min过程中引入约-49 pcm反应性,升、降流量过程测量结果的相对偏差小于10%。周期法和逆动态法的测量结果符合较好。初步误差分析的结果表明,实验结果的测量精度主要由冷却剂温度测量的精度决定。  相似文献   

19.
In order to study the effect of burst temperature on the coolant flow channel restriction, burst tests of fuel bundles were performed. Each bundle consisted of 49 rods (7×7 rods), and bursts were conducted in flowing steam. Burst temperature was changed by changing the internal gas pressure in rods. After the burst, the ballooning behavior of each rod and the degree of coolant flow area restriction in the bundle were measured.

Maximum swelling of rod occurs when the burst temperature is around α and α+β phase boundary, and this phenomenon is almost the same as that in single rod burst tests. Maximum coolant flow area restriction is also observed in this condition.  相似文献   

20.
《Annals of Nuclear Energy》2001,28(10):1019-1031
Transient heat transfer in a nuclear fuel rod is modelled by an improved lumped parameter approach. Hermite approximation for integration is used to obtain the average fuel and cladding temperatures in the radial direction. Thermohydraulic behaviour of a pressurized water reactor (PWR) during reactivity insertion and partial loss-of-flow is simulated by using a simplified mathematical model of reactor core and primary coolant. Transient temperature response of fuel, cladding and coolant is analysed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号