首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 444 毫秒
1.
Crystallization behavior of three blends of 30, 40, and 50% of high-melting fraction (MDP=47.5°C) in low-melting fraction (MDP=16.5°C) of milk fat was studied under dynamic conditions in laboratory scale. The effect of cooling and agitation rates, crystallization temperature, and chemical composition of the blends on the morphology, crystal size distribution, crystal thermal behavior, polymorphism, and crystalline chemical composition was investigated by light microscopy, differential scanning calorimetry (DSC), X-ray diffraction (XRD) and gas chromatography (GC). Different nucleation and growth behavior were found for different cooling rates. At slow cooling rate, larger crystals were formed, whereas at fast cooling rate, smaller crystals appeared together. Slowly crystallized samples had a broader distribution of crystal size. Crystallization temperatures had a similar effect as cooling rate. At higher crystallization temperatures, larger crystals and a broader crystal size distribution were found. Agitation rate had a marked effect on crystal size. Higher agitation rates lead to smaller crystal size. Cooling rate was the most influential parameter in crystal thermal behavior and composition. Slowly crystallized samples showed a broader melting diagram and an enrichment of long-chain triacylglycerols. Crystallization behavior was more related to processing conditions than to chemical composition of blends.  相似文献   

2.
The effect of processing conditions on the crystallization of blends of a high-melting milk fat fraction and sunflower oil was investigated. Two cooling rates were selected for all studies: 0.1°C/min (slow rate) and 5.5°C/min (fast rate). Blends were crystallized in two conditions: (i) with agitation in an 80-mL crystallizer (dynamic), and (ii) on a microscope slide without agitation (static). The selected crystallization temperatures were 25, 30, and 35°C for both cooling rates. Photographs of the development of crystals with time were taken in both static and dynamic conditions, and the crystal size distribution was determined at the moment that the laser signal reached its peak. Photographs showed that when samples were cooled slowly, crystals had a more regular boundary, appeared to be more densely arranged, and were larger. In dynamic conditions, crystal sizes were smaller and the background contained numerous small crystals, which were not found in statically crystallized samples. All images showed that crystals were not single crystals, but grew by accretion.  相似文献   

3.
The effect of processing conditions on rheological behavior of three blends of 30, 40, and 50% of high-melting fraction [melting point measured as Mettler dropping point (MDP)=47.5°C] in low-melting fraction (MDP=16.5°C) of milk fat was studied. The effects of cooling and agitation rates, crystallization temperature, chemical composition of the blends, and time of storage on complex, storage and loss moduli were investigated by dynamic mechanical analysis (DMA). Compression tests were performed on samples using frequency values within the linear viscoelastic range (1 to 10 Hz). Loss modulus was, on average, 10 times lower than elastic modulus and was generally not affected by processing conditions. Samples showed a more solid-like behavior that was better described by storage modulus. Storage modulus varied with all processing conditions used in this study, and even for the same solid fat content, different rheological properties were found. Storage and complex modulus increased with temperature of crystallization (25 to 30°C), even though solid fat contents of samples measured after 24 h at 10°C were the same. Moduli were higher for samples crystallized at slow cooling rate, decreased with agitation rate, and were lower for the 30–70% blend at all processing conditions used. Storage moduli also increased with storage time. Shear storage modulus was calculated from the DMA experimental data, and the results were in agreement with the values reported in literature for butter systems. Fractal dimensions calculated for these systems showed a significant decrease as agitation rate increased in agreement with the softening effect reported for working of butter.  相似文献   

4.
Interesterified soybean oil was crystallized at 29, 34, and 35 °C with and without the use of high‐intensity ultrasound. Samples were crystallized using either (1) continued agitation for the entire crystallization process (CA) or (2) agitation for 10 min (A10) followed by static crystallization. Sonication and agitation decreased the induction period of nucleation at higher temperatures and changed the crystal morphology, crystallization kinetics, and viscoelasticity of the sample. Sonication reduced the crystal sizes and significantly (P <0.05) increased the viscosity (5.2 ± 1.2 to 2369.6 ± 712.1 Pa s) and elastic modulus (83.2 ± 4.1 to 69,236.7 ± 26,765 Pa) of the crystalline networks obtained at 29 °C under A10 condition. An increase in viscosity and elasticity was also observed for sonicated samples crystallized at 34 and 35 °C under A10 and all CA conditions but these differences were not statistically significant (P >0.05). Sonication increased crystallization rates for all conditions tested. Kinetic constants obtained from an Avrami fit increased from1.3 × 10?5 to 6.8 × 10?5 min?n for samples crystallized at 29 °C A10 without and with sonication, respectively, and from 2.6 × 10?9 to 2.4 × 10?7 min?n for samples crystallized at 34 °C A10 without and with sonication, respectively. This increase in the crystallization rate was also observed for samples crystallized under the CA condition at 29 °C.  相似文献   

5.
The objective of this work was to identify the effects that milk phospholipids (PL) have on crystallization of anhydrous milk fat (AMF). Three mixtures were prepared by adding 0%, 0.01%, and 0.1% PL to AMF. Each mixture was crystallized for 90 min at 24, 26, and 28 °C. The solid fat content was measured as a function of time and fitted to the Avrami equation. Melting point, thermal behavior, viscoelastic properties, and crystal morphology were all measured at 90 min. All assays were repeated, as well as hardness, after being stored at 5 °C for 48 hours. Samples containing PL showed slower crystallization as concentration increased especially at higher temperatures (26 and 28 °C). The addition of PL caused a difference in crystal morphology resulting in visibly larger crystals at 90 min. The elasticity and hardness at 90 min were influenced by the addition of PL at 24 °C with lower values obtained in samples with PL compared to the AMF alone. No differences in hardness nor in elasticity was observed for samples crystallized at 26 and 28 °C. A decrease in melting enthalpy was observed in samples with PL indicating a reduction in crystallization at all temperatures, which was supported by crystal morphology.  相似文献   

6.
Differential scanning calorimetry (DSC) has been used to study the crystallization kinetics and thermal characteristics of poly(aryl-ether–ether-ketone) (PEEK) samples heated under a variety of conditions. Samples were heated in nitrogen and air at temperatures between 380 and 420°C for times up to 120 min. The results indicate that as the holding time and temperature of the melt increased, the amount of recrystallizable material decreased, especially when heated in air. Isothermal crystallization kinetics confirmed the presence of a two-stage crystal nucleation and growth process with Avrami exponents of the order of about 2.4 and 1.5 for the first and second processes, respectively. Analysis of the primary crystallization process using the Avrami equation revealed that PEEK samples heated above the melt temperature in air crystallized at a much slower rate than samples heated in nitrogen.  相似文献   

7.
The objective of this research was to examine the effect of ultrasound frequency and high-speed agitation on lipid crystallization. Interesterified soybean oil was crystallized at 44 °C without and with the application of high intensity ultrasound (HIU—20 and 40 kHz) or with high-speed agitation (6000 and 24,000 rpm). Two tip amplitudes (24 and 108 µm) and three pulse durations were evaluated (5, 10, and 15 s) for the acoustic frequencies tested. Sonication at 20 kHz of frequency significantly reduced crystal size, increased (p < 0.05) elasticity (435.9 ± 173.3–80,218 ± 15,384 Pa) and SFC (0.2 ± 0.0–4.5 ± 0.4%). No significant difference was observed in the crystallization behavior of these samples when sonicated at different amplitudes for 5 and 10 s. The crystallization behavior was significantly delayed (p < 0.05) in samples sonicated using 108 µm amplitude for 15 s. Larger crystals were formed in samples sonicated at 40 kHz compared to those obtained with 20 kHz and lower SFC (3.7 ± 0.0%) and elasticity (3943 ± 1459 Pa) values were obtained. High-speed agitation at 24,000 rpm increased SFC (5.5 ± 0.1%) and crystallized area and decreased the elasticity (42,602 ± 11,775 Pa) compared to the samples sonicated at 20 kHz.  相似文献   

8.
The influence of mixing method—solution and melt mixing—on the homogeneity and crystallization kinetics of a series of blends of single‐site materials of linear polyethylene and ethyl‐branched polyethylene was studied by differential scanning calorimetry. Data obtained for heats of melting and crystallization, melting and crystallization peak temperatures, and melting and crystallization temperature profiles were essentially the same for the samples obtained by the two mixing methods. The results obtained can be interpreted as indicating that melt mixing is capable of producing homogeneous melts of these relatively low molar mass polymers, given that solution mixing is considered to give perfectly homogeneous blends. The heat associated with the high temperature melting peak after crystallization at 125°C of the blend samples, obtained by the two preparation methods, was higher than that of the linear polyethylene included in the blends, suggesting that a part of the branched polyethylene crystallized at 125°C. The unblended branched polyethylene showed no crystallization at 125°C. Samples obtained by powder mixing showed independent crystallization and melting of the linear and branched polyethylene components. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1730–1736, 2004  相似文献   

9.
Following studies of the factors affecting the structures and morphologies of nascent polyethylene crystals, density, heat of fusion, crystallinity and melting behaviour of the samples as-polymerized and also after nitric acid oxidation and annealing, were determined by density gradient column, X-ray diffraction and differential scanning calorimetry. The results show that the polymerization temperature is the most important factor controlling the crystal structure. The highest density, crystallinity and crystal quality were found for polymerization temperatures under 100°C, where the growth of the crystals was controlled by a successive polymerization and crystallization mechanism. For this range of polymerization temperatures, density and crystallinity decrease as the polymerization temperature and time increase. When the polymerization temperature is higher than 100°C, near the polyethylene solubility, the crystal grows without any polymerization control, according to a separate polymerization and crystallization mechanism. In this case, density and crystallinity increase with polymerization temperature and time, as with crystallization from melt and solution. The density and crystallinity values of all nascent polyethylene crystals are in the typical range of folded-chain drawn polyethylene or crystallized from the melt. Furthermore, no as-polymerized crystals exhibit a superheating effect suggesting a folded-chain macroconformation. From the melting depression for folded-chain crystals and extended-chain paraffin crystals with finite dimensions, and also from the molecular weight after nitric acid oxidation, the crystal thickness could be calculated. The values are within the range of folded-chain melt crystallized polyethylenes. The results indicate that the crystal thickness of the samples polymerized at below 100°C increases as the polymerization temperature decreases. For the samples polymerized at above 100°C, the crystal thickness increases with the polymerization temperature.  相似文献   

10.
The crystallization kinetics of 2-chloro-4,6-dinitro-resorcinol were studied by the method of intermittent dynamic analysis. The nucleation rate and crystal growth rate of 2-chloro-4,6-dinitro-resorcinol under three groups of conditions (27°C, 180 rpm; 33°C, 180 rpm; 33°C, 240 rpm) were estimated. The results show that, by increasing the temperature of the solution, both the nucleation rate and crystal growth rate increase. It is further found that, when the stirring rate increases, the nucleation rate increases and the crystal growth rate decreases. On the basis of the study of the crystallization kinetics, the effect of the operational parameters on the crystallization was studied. It is proved that, when the stirring rate is 180 rpm and the solution is cooled slowly to −8°C, the particle size of the crystals is even, the quality of the crystals is good, and the yield of the crystals is 40.6%. Published in Russian in Teoreticheskie Osnovy Khimicheskoi Tekhnologii, 2007, Vol. 41, No. 3, pp. 338–342. The text was submitted by the authors in English.  相似文献   

11.
The nucleation and growth of diopside Ca(Mg,Al)(Si,Al)2O6crystals on the free surface of a 24 wt% MgO, 14 wt% CaO, 9 wt% Al2O3, and 53 wt% SiO2glass, with a 2 wt% addition of steel fly ash, were investigated through DTA, XRD, SEM, and optical microscopy. Crystallization was complete at ∼920°C with an activation energy of 589 kJ/mol. Samples with polished free surfaces were nucleated at selected temperatures in the range of 730° to 820°C, and then heat-treated at 870°C for 15 min for crystal growth. Nucleation was predominantly observed at the surface, and the number of diopside crystals per unit of area and the mechanism of crystallization were determined. It was concluded that nucleation reaches a maximum at 750°C, corresponding to an average density of diopside crystals of 8.4 × 106 nuclei/cm2, and that between 900° and 1100°C, a uniformly crystallized layer is formed at an exponential rate. The crystallized volume fraction increased significantly in the 880°–890°C growth range, and remained almost constant at higher temperatures. In the 860°–910°C range, the size of the diopside crystals formed in the samples nucleated at the temperature of the maximum nucleation rate, and linearly increased, reaching values between 1.0 and 3.0 μm at 870° and at 910°C, respectively.  相似文献   

12.
Hydrogenated cottonseed oil (HCSO) is commonly used as a β′-stable fat in margarines and shortenings. In the present study, the crystallization behavior of HCSO is altered via dilution, agitation, tempering regime, and the addition of an emulsifier [polyglycerol polyricinoleate (PgPr)]. Key properties assessed include crystal morphology (with polarized light microscopy), polymorphic behavior (with X-ray diffraction), and crystallization kinetics (with DSC). It is demonstrated that on considerable dilution with canola oil (4% w/w), HCSO can be crystallized in the β′ or β polymorph with associated changes in crystal morphology, depending on tempering regime. Crystallization from the melt to 25°C results in the β′-form, as there is insufficient supercooling to form the β polymorph but enough to form the metastable β′. With cooling from the melt to 5°C, there is adequate supercooling for the δ polymorph to form, with the presence of the canola oil facilitating the transformation toward this stable phase. Static vs. crystallization under agitation does not lead to visible changes in either polymorphic behavior or crystal morphology. However, there is extensive secondary nucleation and growth as a result of crystals breaking off accreting agglomerates. The presence of PgPr, added as a crystal modifier, does not affect the final crystal polymorph or morphology, except under one set of conditions—crystallization from the melt to 5°C with agitation, whereby it considerably alters crystallization behavior.  相似文献   

13.
The melting and crystallization behavior and phase morphology of poly(3-hydroxybutyrate) (PHB) and poly(DL-lactide)-co-poly(ethylene glycol) (PELA) blends were studied by DSC, SEM, and polarizing optical microscopy. The melting temperatures of PHB in the blends showed a slight shift, and the melting enthalpy of the blends decreased linearly with the increase of PELA content. The glass transition temperatures of PHB/PELA (60/40), (40/60), and (20/80) blends were found at about 30°C, close to that of the pure PELA component, during DSC heating runs for the original samples and samples after cooling from the melt at a rate of 20°C/min. After a DSC cooling run at a rate of 100°C/min, the blends showed glass transitions in the range of 10–30°C. Uniform distribution of two phases in the blends was observed by SEM. The crystallization of PHB in the blends from both the melt and the glassy state was affected by the PELA component. When crystallized from the melt during the DSC nonisothermal crystallization run at a rate of 20°C/min, the temperatures of crystallization decreased with the increase of PELA content. Compared with pure PHB, the cold crystallization peaks of PHB in the blends shifted to higher temperatures. Well-defined spherulites of PHB were found in both pure PHB and the blends with PHB content of 80 or 60%. The growth of spherulites of PHB in the blends was affected significantly by 60% PELA content. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65: 1849–1856, 1997  相似文献   

14.
《分离科学与技术》2012,47(12):2645-2660
Abstract

Three sulfa drugs (sulfathiazole, sulfamethizole, and sulfabenzamide) were crystallized using carbon dioxide and water as antisolvents, and the effects of the type of solvent, the crystallization temperature, and the antisolvent injection rate were investigated. Sulfathiazole crystallized in granulate form from acetone, but it was crystallized in acicular form from methanol. Sulfamethizole was crystallized in tabulate form from acetone and as plates from DMF. Sulfabenzamide was precipitated in the form of prisms from acetone and of aciculates from ethyl acetate. As the crystallization temperature increased from 30 to 50°C, the average particle size increased from 6.5 to 10.5 µm for sulfathiazole, 29.5 to 53.1 µm for sulfamethizole, and 33.0 to 59.8 µm for sulfabenzamide. The crystal habit tended to become more needle‐like as the antisolvent injection rate increased. Larger particles were produced when the antisolvent was changed from carbon dioxide to water.  相似文献   

15.
Differential Scanning Calorimetry (DSC) was used to evaluate the crystallization behavior of poly(lactic acid) and its blends with elastomer. It has been observed that the cold crystallization temperature of the blends decreased as the weight fraction of elastomer increased as well as the onset temperature of cold crystallization also shifted to lower temperature. In non-isothermal crystallization experiments, the crystallinity of poly(lactic acid) increased with a decrease in the heating and cooling rate. The melt crystallization of poly(lactic acid) appeared in the low cooling rate (1, 5 and 7.5 °C/min). The presence of low elastomer tends also to increase the crystallinity of poly (lactic acid). The DSC thermogram at ramp of 10 °C/min showed the maximum crystallinity of poly(lactic acid) is 36.95% with 20 wt% elastomer contents in blends. In isothermal crystallization, the cold crystallization rate increased with increasing crystallization temperature in the blends. The Avrami analysis showed that the cold crystallization was in two stages process and it was clearly seen at low temperature. The Avrami exponent (n) at first stage was varying from 1.59 to 2 which described a one-dimensional crystallization growth with homogeneous nucleation, whereas at second stage was varying from 2.09 to 2.71 which described the transitional mechanism to three dimensional crystallization growth with heterogeneous nucleation mechanism. The equilibrium melting point of poly(lactic acid) was also evaluated at 176 °C.  相似文献   

16.
The objective of this research was to evaluate if cavitation events generated during sonication (20 kHz, 216 μm amplitude, 10 s) are responsible for changes in physical properties of a fat with low levels of saturated fatty acids and if these changes are maintained during storage. The fat was crystallized at 24 and 34 °C and stored at 25 °C for up to 24 weeks. An increase in solid fat content and melting enthalpy was observed for sonicated samples crystallized at 34 °C and an increase in elasticity was observed for sonicated samples crystallized at 24 °C (P < 0.05). Hardness increased in sonicated samples crystallized at 24 and 34 °C (P < 0.05) after 60 min of crystallization and after 24 weeks storage. Elasticity of non-sonicated samples crystallized at 24 °C decreased (P < 0.05) after storage at 25 °C for 48 h while it remained constant in sonicated samples. Sonicated samples had more, and smaller crystals compared to the non-sonicated ones. No significant change was observed in physical properties of sonicated samples crystallized at 24 °C and 34 °C during the 24 weeks of storage. Sonication at 24 °C was less efficient at changing the physical properties of the fat compared to 34 °C; however, the number of subharmonic components generated during sonication at these two temperatures was not affected by crystallization temperature. These results suggest that changes in physical properties are associated with secondary effects of sonication such as bubble streamers rather than changes in cluster dynamics.  相似文献   

17.
S Gogolewski 《Polymer》1981,22(6):792-798
The effect of pressure up to 10 kbar and temperature up to 320°C on melting and crystallization behaviour of various random copolyamides has been investigated. Samples used for the studies were obtained by condensation of caprolactam and respectively: piperazine adipate, piperazine terephthalate or hexamethylene terephthalate in various molar proportions. Samples were free from additives. Under comparable conditions of the thermal treatment, the melting temperature and the heat of melting of the crystals grown under pressure increased with increase in temperature and time of crystallization and decreased with increase in the comonomer content. The long periodicity of copolyamides crystallized under pressure increased from 50 to 600–900 Å, the melting temperature and the heat of melting increased from 208°C and 9 cal/g to 228°C and 24 cal/g respectively.  相似文献   

18.
The melting behavior and isothermal and non‐isothermal crystallization kinetics of poly(butylene terephthalate) (PBT)/thermotropic liquid crystalline polymer (LCP), Vectra A950 (VA) blends were studied by using differential scanning calorimetry. Isothermal crystallization experiments were performed at crystallization temperatures (Tc), of 190, 195, 200 and 205°C from the melt (300°C) and analyzed based on the Avrami equation. The values of the Avrami exponent indicate that the PBT crystallization process in PBT/VA blends is governed by three‐dimensional morphology growth preceded by heterogeneous nucleation. The overall crystallization rate of PBT in the melt blends is enhanced by the presence of VA. However, the degree of PBT crystallinily remains almost the same. The analysis of the melting behavior of these blends indicates that the stability and the reorganization process of PBT crystals in blends are dependent on the blend compositions and the thermal history. The fold surface interfacial energy of PBT in blends is more modified than in pure PBT. Analysis of the crystallization data shows that crystallization occurs in Regime II across the temperature range 190°C‐205°C. A kinetic treatment based on the combination of Avrami and Ozawa equations, known as Liu's approach, describes the non‐isothermal crystallization. It is observed that at a given cooling rate the VA blending increases the overall crystallization rate of PBT.  相似文献   

19.
Chain‐folded lamellar crystals of nylon 12 14 have been grown from a dilute 1,4‐butanediol solution with the “self‐seeding” technique. The morphology and structure of nylon 12 14 lamellar crystals were studied by both transmission electron microscopy (TEM) and wide‐angle X‐ray diffraction (WAXD). Two kinds of electron diffraction patterns were detected when different areas were selected for diffraction, which indicates that the α crystal phase and the β crystal phase coexist for nylon 12 14 under the present crystallization conditions. The WAXD diffractograms of the crystal mats confirm the results obtained from electron diffraction (ED). In addition, the changes of the crystal structure as a function of temperature for melt‐crystallized and dilute solution‐crystallized nylon 12 14 were monitored by variable‐temperature WAXD and variable‐temperature infrared spectroscopy (IR). It was found that the melt‐crystallized sample undergoes a Brill transformation at 80°C–90°C, but no Brill temperature can be observed for the dilute solution‐crystallized nylon 12 14.  相似文献   

20.
The influences of the glass fiber (GF) content and the cooling rate for nonisothermal crystallization process of poly(butylene terephthalate)/poly(ethylene terephthalate) (PBT/PET) blends were investigated. The nonisothermal crystallization kinetics of samples were detected by differential scanning calorimetry (DSC) at cooling rates of 5°C/min, 10°C/min, 15°C/min, 20°C/min, 25°C/min, respectively. The Jeziony and Mozhishen methods were used to analyze the DSC data. The crystalline morphology of samples was observed with polarized light microscope. Results showed that the Jeziony and Mozhishen methods were available for the analysis of the nonisothermal crystallization process. The peaks of crystallization temperature (Tp) move to low temperature with the cooling rate increasing, crystallization half‐time (t1/2) decrease accordingly. The crystallization rate of PBT/PET blends increase with the lower GF contents while it is baffled by higher GF contents. POLYM. COMPOS. 36:510–516, 2015. © 2014 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号