首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 250 毫秒
1.
OpenCL是面向异构计算平台的通用编程框架,然而由于硬件体系结构的差异,如何在平台间功能移植的基础上实现性能移植仍是有待研究的问题。当前已有算法优化研究一般只针对单一硬件平台,它们很难实现在不同平台上的高效运行。在分析了不同GPU平台底层硬件架构的基础上,从Global Memory的访存效率、GPU计算资源的有效利用率及其硬件资源的限制等多个角度考察了不同优化方法在不同GPU硬件平台上对性能的影响;并在此基础上实现了基于OpenCL的拉普拉斯图像增强算法。实验结果表明,优化后的算法在不考虑数据传输时间的前提下,在AMD和NVIDIA GPU上都取得了3.7~136.1倍、平均56.7倍的性能加速,优化后的kernel比NVIDIA NPP库中相应函数也取得了12.3%~346.7%、平均143.1%的性能提升,验证了提出的优化方法的有效性和性能可移植性。  相似文献   

2.
图像重映射(Remap)算法是典型的图像变化算法。在图像放缩、扭曲、旋转等领域有着广泛的应用。随着图片规模和分辨率的不断提高,对图形映射算法的性能提出了越来越高的要求。本文在充分考虑不同GPU平台硬件体系结构差异的基础上,系统研究了在OpenCL框架下图像映射(Remap)算法在不同GPU平台上的高效实现方式。并从片外内存访存优化,向量化计算,减少动态指令等多个优化角度考察了不同优化方法在不同GPU平台上对性能的影响,提出了在不同GPU平台间实现性能移植的可能性。实验结果表明,优化后的算法在不考虑数据传输时间的前提下,在AMD HD5850GPU上相对于CPU版本取得114.3~491.5倍的加速比,相对于CUDA版本(现有GPU算法的实现)得到1.01~1.86的加速比,在NIVIDIA C2050 GPU上相对CPU版本取得100.7~369.8倍的加速比,相对于CUDA版本得到0.95~1.58的加速比。有效验证了本文提出的优化方法的有效性和性能可移植性。  相似文献   

3.
归约算法在科学计算和图像处理等领域有着十分广泛的应用,是并行计算的基本算法之一,因此对归约算法进行加速具有重要意义。为了充分挖掘异构计算平台下GPU的计算能力以对归约算法进行加速,文中提出基于线程内归约、work-group内归约和work-group间归约3个层面的归约优化方法,并打破以往相关工作将优化重心集中在work-group内归约上的传统思维,通过论证指出线程内归约才是归约算法的瓶颈所在。实验结果表明,在不同的数据规模下,所提归约算法与经过精心优化的OpenCV库的CPU版本相比,在AMD W8000和NVIDIA Tesla K20M平台上分别达到了3.91~15.93和2.97~20.24的加速比; 相比于OpenCV库的CUDA版本与OpenCL版本,在NVIDIA Tesla K20M平台上分别达到了2.25~5.97和1.25~1.75的加速比;相比于OpenCL版本,在AMD W8000平台上达到了1.24~5.15的加速比。文中工作不仅实现了归约算法在GPU计算平台上的高性能,而且实现了在不同GPU计算平台间的性能可移植。  相似文献   

4.
《计算机工程》2017,(5):240-247
随着实际应用中图像数据规模的增大和分辨率的提高,图像边缘检测算法的性能成为制约图像实时处理的关键。从向量化访存、数据本地化以及条件分支优化3个方面出发,结合算法特性和底层硬件架构特征,研究Canny边缘检测算法在NVIDIA Tegra K1异构计算平台上的GPU性能优化。实验结果表明,与基于Open CV3.0CPU的Canny边缘检测算法相比,优化后的Canny边缘检测算法在不同图像数据规模下可达13.2倍~17.8倍的性能加速比,具有较好的检测性能。  相似文献   

5.
现代GPU一般都提供特定硬件(如纹理部件、光栅化部件及各种片上缓存)以加速二维图像的处理和显示过程,相应的编程模型(CUDA、OpenCL)都定义了特定程序设计接口(CUDA的纹理内存,OpenCL的图像对象)以便图像应用能利用相关硬件支持。以典型图像模糊化处理算法在AMD平台GPU的优化为例,探讨了OpenCL的图像对象在图像算法优化上的适用范围,尤其是分析了其相对于更通用的基于全局内存加片上局部存储进行性能优化的方法的优劣。实验结果表明,图像对象只有在图像为四通道且计算过程中需要缓存的数据量较小时才能带来较好的性能改善,其余情况采用全局内存加局部存储都能获得较好性能。优化后的算法性能相对于精心实现的CPU版加速比为200~1000;相对于NVIDIA NPP库相应函数的性能加速比为1.3~5。  相似文献   

6.
传统求图传递闭包的方法存在计算量大与计算时间长的问题。为加快处理大数据量的传递闭包算法的计算速度,结合算法密集计算和开放式计算语言(OpenCL)框架的特征,采用本地存储器优化的并行子矩阵乘和分块的矩阵乘并行计算,提出一种基于OpenCL的传递闭包并行算法。利用本地存储器优化的并行子矩阵乘算法来优化计算步骤,提高图形处理器(GPU)的存储器利用率,降低数据获取延迟。通过分块矩阵乘并行计算算法实现大数据量的矩阵乘,提高GPU计算核心的利用率。数据结果表明,与CPU串行算法、基于开放多处理的并行算法和基于统一设备计算架构的并行算法相比,传递闭包并行算法在OpenCL架构下NVIDIA GeForce GTX 1070计算平台上分别获得了593.14倍、208.62倍和1.05倍的加速比。  相似文献   

7.
数据流编程语言简化了相关领域的编程,很好地把任务计算和数据通信分开,从而使应用程序分别在任务级和数据级均具有可并行性。针对GPU/CPU混合架构中存在的大量数据并行、任务并行和流水线并行等问题,提出并实现了面向GPU/CPU混合架构的数据流程序任务划分方法和多粒度调度策略,包括任务的分类处理、GPU端任务的水平分裂和CPU端离散任务的均衡化,构造了软件流水调度,经过编译优化生成OpenCL的目标代码。任务的分类处理根据数据流程序各个任务的计算特点和任务间的通信量大小,将各任务分配到合适的计算平台上;GPU端任务的水平分裂利用GPU端任务的并行性将其均衡分裂到各个GPU,以避免GPU间高额的通信开销影响程序整体的执行性能;CPU端离散任务的均衡化通过选择合适CPU核,将CPU端各任务均衡分配给各CPU核,以保证负载均衡并提高各CPU核的利用率。实验以多块NVIDIA Tesla C2050、多核CPU为混合架构平台,选取多媒体领域典型的算法作为测试程序,实验结果表明了划分方法和调度策略的有效性。  相似文献   

8.
随着GPU计算能力及可编程性的不断增强,采用GPU作为通用加速器对应用程序进行性能加速已经成为提升程序性能的主要模式。直方图生成算法是计算机视觉的常用算法,在图像处理、模式识别、图像搜索等领域都有着广泛的应用。随着图像处理规模的扩大和实时性要求的提高,通过GPU提升直方图生成算法性能的需求也越来越强。在GPU计算平台关键优化方法和技术的基础上,完成了直方图生成算法在GPU计算平台上的实现及优化。实验结果表明,通过使用直方图备份、访存优化、数据本地化及规约优化等优化方法,直方图生成算法在AMD HD7850 GPU计算平台上的性能相对于优化前的版本达到了1.8~13.3倍的提升;相对于CPU版本,在不同数据规模下也达到了7.2~210.8倍的性能提升。  相似文献   

9.
现有CPU加速的高性能Linpack基准测试程序(HPL)一般采用基于实际运算能力的动态负载均衡算法来实现。然而该算法在单节点多GPU的平台上表现不佳,其原因是单节点多GPU平台上单个GPU计算量小,并且GPU与CPU的总性能差距较大。为此,提出了经验指导的动态负载均衡算法以及多GPU自适应负载均衡算法,并且在单节点多GPU平台上进行了验证,结果显示,其比现有的基于NVIDIA费米GPU的HPI有6.3%的加速效果。  相似文献   

10.
尿沉渣空间环境的复杂性,导致采集的有形成分图像存在较多冗余信息,提取有效的图像信息变得较为困难,进而使得识别系统需要处理的数据量十分巨大。虽然BP神经网络算法的串行版本DJ8000系统平台解决了细胞等有形成分的识别准确率问题,但其不能满足尿沉渣图像医学检验的实时性要求。为此,提出了基于BP神经网络算法优化的并行处理GPU框架的系统平台。它采用并行优化框架,同步高效地对数据进行加速处理;同时,以GPU 计算和测试平台为硬件系统支持,无论是在硬件指标、数据传输及总线技术还是软硬件的兼容性方面,都有助于解决算法中时常出现的负载不均衡的问题。实验数据表明,BP神经网络尿沉渣识别算法在优化并行框架的GPU 系统处理平台上显示的加速比、时效比和运行时间等相关性能参数值都有所提升。相比于DJ8000系统平台,优化的AMD HD7970 和 NVIDIAGTX680 两个并行处理GPU框架系统平台相应的加速比参数值分别是前者的10.82~21.35个和7.63~15.28个标准当量。实验数据充分说明,优化并行框架的GPU处理系统中相关的逻辑数据、地址数据和线性寻程的函数映射关系均能相互动态分配对接并优化算法架构,实现软件到硬件系统的最优比映射,最终解决由于线程间负载不均衡导致的性能瓶颈问题,从而有效地化解了医学领域实时检测中的时效性这一难题。  相似文献   

11.
Kmeans算法是无监督机器学习中一种典型的聚类算法,是对已知数据集进行划分和分组的重要方法,在图像处理、数据挖掘、生物学领域有着广泛的应用。随着实际应用中数据规模的不断变大,对Kmeans算法的性能也提出了更高的要求。在充分考虑不同硬件平台体系架构差异的基础上,系统地研究了Kmeans算法在GPU和APU平台上实现与优化的关键技术:片上全局同步高效实现,冗余计算减少全局同步次数,线程任务重映射,局部内存重用等,实现了Kmeans算法在不同硬件平台上的高性能与性能移植。实验结果表明,优化后的算法在考虑数据传输时间的前提下,在AMD HD7970 GPU上相对于CPU版本取得136.975~170.333倍的加速比,在AMD A10-5800K APU上相对于CPU版本取得22.2365~24.3865倍的加速比,有效验证了优化方法的有效性和平台的可移植性。  相似文献   

12.
连续的数据无关是指计算目标矩阵连续的元素时使用的源矩阵元素之间没有关系且也为连续的,访存密集型是指函数的计算量较小,但是有大量的数据传输操作。在OpenCL框架下,以bitwise函数为例,研究和实现了连续数据无关访存密集型函数在GPU平台上的并行与优化。在考察向量化、线程组织方式和指令选择优化等多个优化角度在不同的GPU硬件平台上对性能的影响之后,实现了这个函数的跨平合性能移植。实验结果表明,在不考虑数据传输的前提下,优化后的函数与这个函数在OpenCV库中的CPU版本相比,在AMD HD 5850 GPU达到了平均40倍的性能加速比;在AMD HD 7970 GPU达到了平均90倍的性能加速比;在NVIDIA Tesla 02050 CPU上达到了平均60倍的性能加速比;同时,与这个函数在OpenCV库中的CUDA实现相比,在NVIDIA Tesla 02050平台上也达到了1.5倍的性能加速。  相似文献   

13.
In wireless communication, Viterbi decoding algorithm (VDA) is the one of most popular channel decoding algorithms, which is widely used in WLAN, WiMAX, or 3G communications. However, the throughput of Viterbi decoder is constrained by the convolutional characteristic. Recently, the three‐point VDA (TVDA) was proposed to solve this problem. In TVDA, the whole procedure can be divided into three phases, the forward, trace‐back, and decoding phases. In this paper, we analyze the parallelism of TVDA and propose parallel TVDA on the multi‐core CPU, graphics processing unit (GPU), and field programmable gate array (FPGA). We demonstrate approaches that fully exploit its performance potential on CPU, GPU, and FPGA computing platforms. For CPU platforms, we perform two optimization methods, single instruction multiple data and multithreading to gain over 145 × speedup over the naive CPU version on a quad‐core CPU platform. For GPU platforms, we propose the combination of cached memory optimization, coalesced global memory accesses, codeword packing scheme, and asynchronous data transition, achieving the throughput of 404.65 Mbps and 12 × speedup over initial GPU versions on an NVIDIA GeForce GTX580 card and 7 × speedup over Intel quad‐core CPU i5‐2300, under the same manufacturing year and both with fully optimized schemes. In addition, for FPGA platforms, we customize a radix‐4 pipelined architecture for the TVDA in a 45‐nm FPGA chip from Xilinx (XC6VLX760). Under 209.15‐MHz clock rate, it achieves a throughput of 418.30 Mbps. Finally, we also discuss the performance evaluation and efficiency comparison of different flexible architectures for real‐time Viterbi decoding in terms of the decoding throughput, power consumption, optimization schemes, programming costs, and price costs.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
目的 近年来双目视觉领域的研究重点逐步转而关注其“实时化”策略的研究,而立体代价聚合是双目视觉中最为复杂且最为耗时的步骤,为此,提出一种基于GPU通用计算(GPGPU)技术的近实时双目立体代价聚合算法。方法 选用一种匹配精度接近于全局匹配算法的局部算法——线性立体匹配算法(linear stereo matching)作为代价聚合策略;结合线性代价聚合的原理,对其主要步骤(代价计算、均值滤波及系数求解等)的计算流程进行有针对性地并行优化。结果 对于相同的实验样本,用本文方法在NVIDA GTX780 实验平台上能在更短的时间计算出代价矩阵,与原有的CPU实现方法相比,代价聚合的效率平均有了数十倍的提升。结论 实时双目立体代价聚合方法,为在个人通用PC平台上实时获取高质量双目视觉深度信息提供了一个高效可靠的途径。  相似文献   

15.
With fierce competition between CPU and graphics processing unit (GPU) platforms, performance evaluation has become the focus of various sectors. In this paper, we take a well‐known algorithm in the field of biosequence matching and database searching, the Smith–Waterman (S‐W) algorithm as an example, and demonstrate approaches that fully exploit its performance potentials on CPU, GPU, and field‐programmable gate array (FPGA) computing platforms. For CPU platforms, we perform two optimizations, single instruction, multiple data and multithread, with compiler options, to gain over 70 × speedups over naive CPU versions on quad‐core CPU platforms. For GPU platforms, we propose the combination of coalesced global memory accesses, shared memory tiles, and loop unfolding, achieving 50 × speedups over initial GPU versions on an NVIDIA GeForce GTX 470 card. Experimental results show that the GPU GTX 470 gains 12 × speedups, instead of 100 × reported by some studies, over Intel quadcore CPU Q9400, under the same manufacturing technology and both with fully optimized schemes. In addition, for FPGA platforms, we customize a linear systolic array for the S‐W algorithm in a 45‐nm FPGA chip from Xilinx (XC6VLX760), with up to 1024 processing elements. Under only 133 MHz clock rate, the FPGA platform reaches the highest performance and becomes the most power‐efficient platform, using only 25 W compared with 190 W of the GPU GTX 470. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
This work explores the performance of single- and multi-GPU computing on state-of-the-art NVIDIA- and AMD-based server-class hardware using various programming interfaces to accelerate a real-world scientific application for solidification modeling based on the phase-field method. The main computations of this memory-bound application correspond to 20 stencils computed across grid nodes. We investigate the application's scalability for two basic schemes of organizing computation: without and with hiding data transfers behind computation, combined with using either peer-to-peer inter-GPU data transfers through NVIDIA NVLink and AMD Infinity interconnects or communication over the PCIe and main memory. Among the studied programming interfaces is CUDA, HIP, and OpenMP Accelerator Model. While the first two are designed to write the codes for a specific hardware platform, OpenMP enables code portability between NVIDIA and AMD GPUs. The resulting performance is experimentally assessed on computing platforms containing NVIDIA V100 (up to 8 GPUs) and A100 (one GPU), as well as AMD MI210 (one device) and MI250 (up to 8 logical GPUs).  相似文献   

17.
针对联机分析处理(OLAP)中事实表与多个维表之间的星形连接执行代价较高的问题,提出了一种在先进的多核中央处理器(CPU)和图形处理器(GPU)上的星形连接优化方法。首先,对于多核CPU和GPU平台的星形连接中的物化代价问题,提出了基于向量索引的CPU和GPU平台上的向量化星形连接算法;然后,通过面向CPU cache和GPU shared memory大小的向量划分来提出基于向量粒度的星形连接操作,从而优化星形连接中向量索引的物化代价;最后,提出了基于压缩向量的星形连接算法,将定长向量索引压缩为变长的二元向量索引,从而在低选择率时提高cache内向量索引的存储访问效率。实验结果表明,在CPU平台上向量化星形连接算法相对于常规的行式或列式连接性能提升了40%以上,在GPU平台上向量化星形连接算法相对于常规星形连接算法性能提升超过了15%;与当前主流的内存数据库和GPU数据库相比,优化的星形连接算法性能相对于最优内存数据库Hyper性能提升了130%,相对于最优的GPU数据库OmniSci性能提升了80%。可见基于向量索引的向量化星形连接优化技术有效地提高了多表连接性能,与传统优化技术相比,基于向量索引的向量化处理提高了较小cache上的数据存储访问效率,压缩向量进一步提升了向量索引在cache内的访问效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号