首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 593 毫秒
1.
归约算法在科学计算和图像处理等领域有着十分广泛的应用,是并行计算的基本算法之一,因此对归约算法进行加速具有重要意义。为了充分挖掘异构计算平台下GPU的计算能力以对归约算法进行加速,文中提出基于线程内归约、work-group内归约和work-group间归约3个层面的归约优化方法,并打破以往相关工作将优化重心集中在work-group内归约上的传统思维,通过论证指出线程内归约才是归约算法的瓶颈所在。实验结果表明,在不同的数据规模下,所提归约算法与经过精心优化的OpenCV库的CPU版本相比,在AMD W8000和NVIDIA Tesla K20M平台上分别达到了3.91~15.93和2.97~20.24的加速比; 相比于OpenCV库的CUDA版本与OpenCL版本,在NVIDIA Tesla K20M平台上分别达到了2.25~5.97和1.25~1.75的加速比;相比于OpenCL版本,在AMD W8000平台上达到了1.24~5.15的加速比。文中工作不仅实现了归约算法在GPU计算平台上的高性能,而且实现了在不同GPU计算平台间的性能可移植。  相似文献   

2.
图像重映射(Remap)算法是典型的图像变化算法。在图像放缩、扭曲、旋转等领域有着广泛的应用。随着图片规模和分辨率的不断提高,对图形映射算法的性能提出了越来越高的要求。本文在充分考虑不同GPU平台硬件体系结构差异的基础上,系统研究了在OpenCL框架下图像映射(Remap)算法在不同GPU平台上的高效实现方式。并从片外内存访存优化,向量化计算,减少动态指令等多个优化角度考察了不同优化方法在不同GPU平台上对性能的影响,提出了在不同GPU平台间实现性能移植的可能性。实验结果表明,优化后的算法在不考虑数据传输时间的前提下,在AMD HD5850GPU上相对于CPU版本取得114.3~491.5倍的加速比,相对于CUDA版本(现有GPU算法的实现)得到1.01~1.86的加速比,在NIVIDIA C2050 GPU上相对CPU版本取得100.7~369.8倍的加速比,相对于CUDA版本得到0.95~1.58的加速比。有效验证了本文提出的优化方法的有效性和性能可移植性。  相似文献   

3.
《计算机工程》2017,(5):240-247
随着实际应用中图像数据规模的增大和分辨率的提高,图像边缘检测算法的性能成为制约图像实时处理的关键。从向量化访存、数据本地化以及条件分支优化3个方面出发,结合算法特性和底层硬件架构特征,研究Canny边缘检测算法在NVIDIA Tegra K1异构计算平台上的GPU性能优化。实验结果表明,与基于Open CV3.0CPU的Canny边缘检测算法相比,优化后的Canny边缘检测算法在不同图像数据规模下可达13.2倍~17.8倍的性能加速比,具有较好的检测性能。  相似文献   

4.
Kmeans算法是无监督机器学习中一种典型的聚类算法,是对已知数据集进行划分和分组的重要方法,在图像处理、数据挖掘、生物学领域有着广泛的应用。随着实际应用中数据规模的不断变大,对Kmeans算法的性能也提出了更高的要求。在充分考虑不同硬件平台体系架构差异的基础上,系统地研究了Kmeans算法在GPU和APU平台上实现与优化的关键技术:片上全局同步高效实现,冗余计算减少全局同步次数,线程任务重映射,局部内存重用等,实现了Kmeans算法在不同硬件平台上的高性能与性能移植。实验结果表明,优化后的算法在考虑数据传输时间的前提下,在AMD HD7970 GPU上相对于CPU版本取得136.975~170.333倍的加速比,在AMD A10-5800K APU上相对于CPU版本取得22.2365~24.3865倍的加速比,有效验证了优化方法的有效性和平台的可移植性。  相似文献   

5.
OpenCL是面向异构计算平台的通用编程框架,然而由于硬件体系结构的差异,如何在平台间功能移植的基础上实现性能移植仍是有待研究的问题。当前已有算法优化研究一般只针对单一硬件平台,它们很难实现在不同平台上的高效运行。在分析了不同GPU平台底层硬件架构的基础上,从Global Memory的访存效率、GPU计算资源的有效利用率及其硬件资源的限制等多个角度考察了不同优化方法在不同GPU硬件平台上对性能的影响;并在此基础上实现了基于OpenCL的拉普拉斯图像增强算法。实验结果表明,优化后的算法在不考虑数据传输时间的前提下,在AMD和NVIDIA GPU上都取得了3.7~136.1倍、平均56.7倍的性能加速,优化后的kernel比NVIDIA NPP库中相应函数也取得了12.3%~346.7%、平均143.1%的性能提升,验证了提出的优化方法的有效性和性能可移植性。  相似文献   

6.
使用GPU加速分子动力学模拟中的非绑定力计算   总被引:1,自引:0,他引:1  
在分子动力学模拟(MD)中,对非绑定力的计算需要花费大量的时间。本文提出了基于CUDA和Brook+的两种双精度算法,分别在NVIDIA和AMD两款主流GPU上实现了非绑定力的计算,借助GPU的计算能力加速了整个MD程序。算法对MD进行了任务分割,采用区域分解的方法将非绑定力的计算映射到GPU的计算核心上,同时针对两款GPU的各自特点提出了线程块内共享存储、最小化数据集两种优化方法。性能测试结果表明,与Intel Xeon 2.6GHzCPU的单核相比,43.2万粒子的高速粒子碰撞模拟,在配置NVIDIA Tesla C1060的系统上性能提高了6.5倍,在配置AMD HD4870的系统上性能提高了4.8倍。  相似文献   

7.
随着GPU计算能力及可编程性的不断增强,采用GPU作为通用加速器对应用程序进行性能加速已经成为提升程序性能的主要模式。直方图生成算法是计算机视觉的常用算法,在图像处理、模式识别、图像搜索等领域都有着广泛的应用。随着图像处理规模的扩大和实时性要求的提高,通过GPU提升直方图生成算法性能的需求也越来越强。在GPU计算平台关键优化方法和技术的基础上,完成了直方图生成算法在GPU计算平台上的实现及优化。实验结果表明,通过使用直方图备份、访存优化、数据本地化及规约优化等优化方法,直方图生成算法在AMD HD7850 GPU计算平台上的性能相对于优化前的版本达到了1.8~13.3倍的提升;相对于CPU版本,在不同数据规模下也达到了7.2~210.8倍的性能提升。  相似文献   

8.
基于OpenCL的图像积分图算法优化研究   总被引:1,自引:0,他引:1  
图像积分图算法在快速特征检测中有着广泛的应用,通过GPU对其进行性能加速有着重要的现实意义。然而由于GPU硬件架构的复杂性和不同硬件体系架构间的差异性,完成图像积分图算法在GPU上的优化,进而实现不同GPU平台间的性能移植是一件非常困难的工作。在分析不同CPU平台底层硬件架构的基础上,从片外访存带宽利用率、计算资源利用率和数据本地化等多个角度考察了不同优化方法在不同GPU硬件平台上对性能的影响。并在此基础上实现了基于OpenCL的图像积分图算法。实验结果表明,优化后的算法在AMD和NVIDIA CPU上分别取得了11.26和12.38倍的性能加速,优化后的GPU kernel比NVIDIA NPP库中的相应函数也分别取得了55.01%和65.17%的性能提升。验证了提出的优化方法的有效性和性能可移植性。  相似文献   

9.
线性系统求解中迭代算法的GPU加速方法   总被引:1,自引:0,他引:1  
在求解线性系统时,迭代法是一种基本的方法,特别是在系数矩阵为大规模稀疏矩阵的情况下,高效地使用迭代法求解变得十分重要。本文通过分析迭代法的一般特点,提出了使用具有强大计算能力和存储带宽的GPU加速迭代法的一般方法。利用这些方法,在两种主流GPU平台上实现了一个经典的迭代法PQMRCGSTAB,并且针对不同的GPU平台特点提出了具体的优化方法。与AMD Opteron 2.4GHz 4核处理器相比,双精度版本的PQMRCGSTAB算法经NVIDIA Tesla S1070加速后性能提高31倍,经AMD Radeon HD 4870 X2加速后性能提高9倍。  相似文献   

10.
针对大尺度压缩感知重构算法实时性应用的需要,探讨了基于图形处理器(GPU)的正交匹配追踪算法(OMP)的加速方法及实现。为降低中央处理器与GPU之间传输的高延迟,将整个OMP算法的迭代过程转移到GPU上并行执行。其中,在GPU端根据全局存储器的访问特点,改进CUDA程序使存储访问满足合并访问条件,降低访问延迟。同时,根据流多处理器(SM)的资源条件,增加SM中共享存储器的分配,通过改进线程访问算法来降低bank conflict,提高访存速度。在NVIDIA Tesla K20Xm GPU和Intel(R) E5-2650 CPU上进行了测试,结果表明,算法中耗时长的投影模块、更新权值模块分别可获得32和46倍的加速比,算法整体可获得34倍的加速比。  相似文献   

11.
Fourier methods have revolutionized many fields of science and engineering,such as astronomy,medical imaging,seismology and spectroscopy,and the fast Fourier transform(FFT) is a computationally efficient method of generating a Fourier transform.The emerging class of high performance computing architectures,such as GPU,seeks to achieve much higher performance and efficiency by exposing a hierarchy of distinct memories to software.However,the complexity of GPU programming poses a significant challenge to developers.In this paper,we propose an automatic performance tuning framework for FFT on various OpenCL GPUs,and implement a high performance library named MPFFT based on this framework.For power-of-two length FFTs,our library substantially outperforms the clAmdFft library on AMD GPUs and achieves comparable performance as the CUFFT library on NVIDIA GPUs.Furthermore,our library also supports non-power-of-two size.For 3D non-power-of-two FFTs,our library delivers 1.5x to 28x faster than FFTW with 4 threads and 20.01x average speedup over CUFFT 4.0 on Tesla C2050.  相似文献   

12.
图形处理器(graphic processing unit,GPU)的最新发展已经能够以低廉的成本提供高性能的通用计算。基于GPU的CUDA(compute unified device architecture)和OpenCL(open computing language)编程模型为程序员提供了充足的类似于C语言的应用程序接口(application programming interface,API),便于程序员发挥GPU的并行计算能力。采用图形硬件进行加速计算,通过一种新的GPU处理模型——并行时间空间模型,对现有GPU上的N-body实现进行了分析,从而提出了一种新的GPU上快速仿真N-body问题的算法,并在AMD的HD Radeon 5850上进行了实现。实验结果表明,相对于CPU上的实现,获得了400倍左右的加速;相对于已有GPU上的实现,也获得了2至5倍的加速。  相似文献   

13.
Open computing language (OpenCL) is a new industry standard for task-parallel and data-parallel heterogeneous computing on a variety of modern CPUs, GPUs, DSPs, and other microprocessor designs. OpenCL is vendor independent and hence not specialized for any particular compute device. To develop efficient OpenCL applications for the particular platform, we still need a more profound understanding of architecture features on the OpenCL model and computing devices. For this purpose, we design and implement an OpenCL micro-benchmark suite for GPUs and CPUs. In this paper, we introduce the implementations of our OpenCL micro benchmarks, and present the measuring results of hardware and software features like performance of mathematical operations, bus bandwidths, memory architectures, branch synchronizations and scalability, etc., on two multi-core CPUs, i.e. AMD Athlon II X2 250 and Intel Pentium Dual-Core E5400, and two different GPUs, i.e. NVIDIA GeForce GTX 460se and AMD Radeon HD 6850. We also compared the measuring results with existing benchmarks to demonstrate the reasonableness and correctness of our benchmark suite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号