首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Crack closure of physical short and long cracks of LY12CZ aluminum alloy during fatigue process was investigated using acoustic emission (AE) technique. Results showed that the effective fatigue crack growth curve (da/dN vs. ΔKeff) of physical short and long cracks obtained by the AE technique was consistent with the effective fatigue crack growth curve at high stress ratio (R = 0.8), which implied that the AE technique could measure the crack closure level, especially for physical short crack. The growth rate of physical short crack was much higher than that of long crack at the same ΔK, and the lower crack closure level of short crack was the main reason.  相似文献   

2.
This paper supplements previous work which showed that the crack growth rate in a large range of metallic materials fitted a variant of the Hartman–Schijve equation where da/dN is a function of (ΔK  ΔKthr)α, where ΔKthr is a parameter that reflects the apparent fatigue stress intensity threshold of the material, and α is approximately 2. For the case of 7050-T7451 aluminium alloy the same equation is shown to fit both long and short crack growth data once the appropriate ΔKthr is chosen for each specific data set. This equation is used here to produce accurate predictions of the fatigue crack growth in 7050-T7451 aluminium alloy specimens with both a low and high stress concentration subjected to two combat aircraft loading spectra. Thus, it is postulated that if long crack data are fitted to the variant of the Hartman–Schijve equation then accurate predictions can be made in the short crack regime for a wide range of materials.  相似文献   

3.
Thin sheets of nitrided 18Ni maraging steel are tested under cyclic tension (load ratio R = 0.1) in the very high cycle fatigue (VHCF) regime. The ultrasonic fatigue testing method with a cycling frequency of about 20 kHz has been further developed for these experiments. Sheet specimens with 0.35 mm thickness are mounted on a carrier specimen, they are pre-stressed and are forced to vibrate jointly. Between 107 and 109 cycles, fatigue cracks are initiated exclusively at internal TiN inclusions. The areas of the crack initiating inclusions projected perpendicular to the applied tensile stress are evaluated. The square root of inclusion areas, (areaINC)1/2 lies between 2.5 μm and 5.3 μm. Considering inclusions as cracks, their stress intensity range is between ΔKINC = 1.3 MPa m1/2 and 2.4 MPa m1/2. The sizes of crack initiating inclusions influence fatigue lifetimes. This is considered in a crack propagation model and by presenting lifetimes versus the stress amplitudes multiplied by (areaINC)1/12. A mean lifetime of 109 cycles is found at a stress amplitude of 22% of the tensile strength, which is comparable to other high strength steels tested under cyclic tension.  相似文献   

4.
Turbo generators for nuclear plants are mostly equipped with hydrogen cooling systems. Current practice of characterizing the growth of fatigue cracks on the basis of fracture mechanics primarily relies on fatigue tests for long cracks which are typically of several millimeters in length. However, in view of extended life for the plants, the damage tolerance evaluation of such fatigue-critical engineering components requires understanding of the propagation of cracks of significantly smaller dimensions. Then the near threshold of short cracks is investigated and compared to the behavior of long crack by experiments under 4 bar hydrogen atmosphere. The short crack fatigue propagation in hydrogen atmosphere is shown similar to that in air, growing faster than the long crack and at ΔK ranging below the long crack threshold; this effect is related to a reduced crack closure shielding. The propagation behavior of long crack under hydrogen atmosphere is shown similar to that obtained in air in the low rate range, i.e. when the maximum of the stress intensity factor Kmax is lower than a critical level of about 16 MPa m1/2 with higher crack growth rate than in high vacuum. This environment effect is related to the presence of residual water vapor in both gases. For higher Kmax, much faster growth rates under hydrogen atmosphere in comparison to air and vacuum are observed and related to hydrogen assisted intergranular propagation combining fatigue and sustained loading damage. The results are discussed on the basis of micrographic observations supporting the involved mechanisms.  相似文献   

5.
Duplex stainless steels (DSS) fatigue crack propagation resistance is strongly affected by both microstructure and environment. In this work, environment influence on the fatigue crack propagation in a 22 Cr 5 Ni duplex and in a 25 Cr 7 Ni superduplex stainless steels is investigated considering three different stress ratios (R = Kmin/Kmax = 0.1, 0.5, 0.75). Tests are performed according to ASTM E 647 standard, both in air and under hydrogen charging conditions (0.1 M H2SO4 + 0.01 M KSCN aqueous solution, ?0.9 V/SCE). Crack fracture surfaces are extensively analysed by means of a scanning electron microscope. Furthermore, crack paths are investigated by means of a crack profile analysis performed through a light optical microscope. Nickel coated fracture surface sections obtained for constant ΔK values are considered in order to analyse the loading (R values) and environment influence on fatigue crack paths.  相似文献   

6.
Investigations are presented in this paper on quenched and tempered steel 42CrMoS4 from two batches, with two different tensile strengths (Rm = 1100 MPa, 1350 MPa) but with similar microstructure, and a nodular cast iron EN-GJS-900-2 (Rm = 930 MPa). Fatigue tests with smooth (Kt = 1) and notched (Kt = 1.75) specimens were performed at R = −1 and R = 0 up to the number of cycles N = 2·109 in order to determine the fatigue strength behaviour and failure mechanisms, especially in the VHCF-region. Failure in smooth specimens often initiated at material defects such as oxides in the quenched and tempered steel and shrinkage holes in the nodular cast iron. Firstly, a fatigue strength analysis was performed that did not consider these defects. A possibility of analysis of experimental data including VHCF-results has been discussed. Next, a linear elastic fracture mechanics analysis was performed in order to describe the defect behaviour, assuming that the defects act like cracks. The results showed that there are lower limit or threshold values of the stress intensity factor range ΔK for crack propagation in both materials. Analysis of defects and defect distribution in run-out specimens confirmed this conclusion. From the comparison of the results with an SN curve from the design code FKM-Guideline Analytical strength assessment of components, recommendations for design and assessment of components have been derived.  相似文献   

7.
Fatigue measurements were performed up to the very high cycle fatigue regime in order to investigate pit-to-crack transition in 12% Cr steam turbine blade steel. Pre-pitted and smooth specimens were tested in air and aerated 6 ppm Cl solution. SN curves for different stress ratios were determined and a stress ratio dependent critical pit size for pit-to-crack transition with subsequent failure was found. Early crack initiation and small crack growth were observed in the process of development and by fractography using field emission scanning electron microscopy. Fatigue crack growth rates (FCGR) for cracks emanating from pits were determined. Good similarity of FCGR curves for short and long cracks was obtained by normalising the stress intensity factor ranges with the threshold values.  相似文献   

8.
Prediction model for the growth rates of short cracks based on Kmax‐constant tests with M(T) specimens The fatigue crack growth behaviour of short corner cracks in the Aluminium alloys Al 6013‐T6 and Al 2524‐T351 was investigated. The aim was to determine the crack growth rates of small corner cracks at stress ratios of R = 0.1, R = 0.7 and R = 0.8 and to develop a method to predict these crack growth rates from fatigue crack growth curves determined for long cracks. Corner cracks were introduced into short crack specimens, similar to M(T)‐specimens, at one side of a hole (Ø = 4.8 mm) by cyclic compression (R = 20). The pre‐cracks were smaller than 100 μm (notch + precrack). A completely new method was used to cut very small notches (10–50 μm) into the specimens with a Focussed Ion Beam. The results of the fatigue crack growth tests with short corner cracks were compared with long fatigue crack growth test data. The short cracks grew at ΔK‐values below the threshold for long cracks at the same stress ratio. They also grew faster than long cracks at the same ΔK‐values and the same stress ratios. A model was developed on the basis of Kmax‐constant tests with long cracks that gives a good and conservative prediction of the short crack growth rates.  相似文献   

9.
The fatigue crack growth behaviour in as-cast and hot isostatically pressed (HIP) model cast aluminium piston alloys with hypoeutectic Si compositions of 6.9 wt% and 0.67 wt% has been investigated. The HIP alloys showed slightly improved fatigue crack growth resistance. Analysis of the crack path profiles and fracture surfaces showed that the crack tends to avoid Si and intermetallic particles at low ΔK levels up to a mid-ΔK of ∼7 MPa√m. However, some particles do fail ahead of the crack tip to facilitate crack advance due to the interconnected microstructure of these alloys. At higher levels of ΔK, the crack increasingly seeks out Si and intermetallic particles up to a ΔK of ∼9 MPa√m after which the crack preferentially propagates through intermetallic particles in the 0.67 wt%Si alloy or Si and intermetallics in the 6.9 wt%Si alloys. It was also observed that crack interaction with intermetallics caused crack deflections that led to roughness-induced crack closure and possibly oxide-induced crack closure at low to mid-ΔK. However, crack closure appears unimportant at high ΔK due to the large crack openings and evidenced by the fast crack growth rates observed.  相似文献   

10.
In this study, the fatigue behavior of aluminum alloy 2024T3 v-notched specimens repaired with composite patch under block loading was analyzed experimentally. Two loading blocks were applied: increasing and decreasing at two stress ratio: R = 0 and R = 0.1. Failed samples were examined under scanning electron microscope at different magnifications to analyze their fractured surfaces. The obtained results show that under increasing blocks, the crack growth is accelerated for both repaired and unrepaired specimens. This is attributed to the increase of the loading amplitude in the second block. A retardation effect was observed for decreasing blocks loading in unrepaired specimens. However, this retardation effect is attenuated by the presence of the patch which lead to lower fatigue life for repaired specimens.  相似文献   

11.
12.
In the paper, the results of crack tip opening displacement (CTOD) and crack opening displacement (COD) in place of crack initiation as well as the fatigue crack growth rate in higher strength steel are presented. The investigation were carried out on flat specimens with central notch under constant amplitude tensile fatigue loading at stress ratio R = 0.2 and different value of the stress σmax. The test results showed that with growth of crack length l grew values of the CTOD and COD. In the work, it was proposed calculation of the CTOD value on basis various dependence of plastic zone radius on crack tip.  相似文献   

13.
《Composites Part A》2000,31(10):1031-1037
In the present investigation, fatigue crack initiation in SiC fibre (SCS-6) reinforced titanium has been analysed on the basis of a finite element (FE) model. In this composite material after processing a complicated interfacial zone exists, consisting of the remains of the carbon coating and the reaction zone. This reaction zone usually causes the initiation of a fatigue crack as it fails at a low stress. The growth of a fatigue starting at a reaction layer crack is analysed for different thick reaction layers (from 0.5 to 3 μm). The conditions under which a fatigue crack can be arrested and the influence of additional fibre failure on fatigue crack growth have been analysed. The results show that the formation of the matrix crack largely depends on the applied stress and reaction layer thickness. Under an applied stress, σmax<800MPa, a crack in 1-μm-thick reaction layer cannot extend into the matrix. For higher applied stress a matrix crack can grow form the cracked reaction layer but after an extension of several microns it can be arrested. A mechanism of ΔK-reduction is found to be responsible for the crack arrest. The thickness of the reaction layer up to 3 μm has no significant influence on fatigue crack growth rate for larger fatigue cracks (>10 μm).  相似文献   

14.
Crack-face interference-free mode I and mode II crack-growth data was combined with smooth axial (λ = εxy/εxx = 0) and torsional (λ = ∞) endurance limit data to develop unified crack growth models that incorporate both shear and tensile cracking. The crack growth models incorporated growth from a slip band (including short crack behavior) size crack until the final failure of a long crack, and the ability to switch between crack growth on shear planes to growth on tensile planes. The models successfully predicted smooth specimen crack-face interference-free fatigue lives and gave reasonable estimates of the smooth specimen endurance limits of crack-face interference free tubular tests run at intermediate strain ratios (λ = 3/4, 3/2, and 3). The series of Kitigawa–Takahashi (threshold fatigue) diagrams developed from the models help illustrate the competition between shear and tensile cracking at the fatigue limit under crack-face interference-free crack growth.  相似文献   

15.
In this paper R-ratio effects on fatigue crack growth near threshold region of a metastable austenitic stainless steel (MASS) in two different conditions, i.e. annealed and cold rolled, is investigated. The authors present two approaches to correlate FCGR data for R = 0.1, 0.3, 0.5, 0.7 and Kmax = 23 MPa√m using a two-parameters approach (ΔK, Kmax and α in Kujawski’s model) and crack closure model (using Elber’s Kop and in Donald’s ACRn2 approaches). The Kop and ACRn2 were experimentally measured on a single edge tension specimens. The Kop measurements were performed using a modified method and based on ASTM standards. While the two driving force approaches correlate data well in the Paris region, they fail to correlate them in the threshold region. However, this correlation can be improved in the threshold region when a different α value from the Paris region is used. The authors indicated that two different mechanisms operate; one in the Paris region and another in the near threshold. Hence, they proposed to combine the two-parameter and crack closure approaches where ΔK is replaced by ΔKeff (estimated by a new method proposed in this paper), which is shown to correlate the FCGR data for different stress ratios for annealed steel. The correlation for cold rolled condition shows improvement with the new approach but is not as good as for the annealed one. The author further suggests to modify Kmax in the two-parameter approach.  相似文献   

16.
A series of fatigue experiments was performed in order to investigate the effect of the R-ratio on the fatigue/fracture behavior of adhesively-bonded pultruded GFRP double cantilever beam joints. Constant amplitude fatigue experiments were carried out under displacement control with a frequency of 5 Hz in ambient laboratory conditions. Three different R-ratios were applied: R = 0.1, R = 0.5 and R = 0.8. The crack length was determined by means of crack gages and a dynamic compliance method. The dominant failure mode was a fiber-tear failure that occurred in the mat layers of the pultruded laminates. The depth of the crack location significantly affected the energy dissipated for the fracture under cyclic loading. Short-fiber and roving bridging increased the fracture resistance during crack propagation. Fatigue crack growth curves were derived for each R-ratio and each observed crack path location. The fatigue threshold and slope of the fatigue crack growth curve significantly increased with increased R-ratio.  相似文献   

17.
The wire winding of high pressure vessels is a technique usually applied to introduce initial compressive stresses in the inner core of the vessel, with the aim to improve the fatigue life under cyclic pressure conditions. In this work, the procedure followed to calculate the number of design cycles is presented, using the fracture mechanics approach and the structural integrity concepts. In particular, the API 579-1/ASME FFS-1 procedure has been used to analyse the structural integrity of the vessel through the crack propagation stage. Starting from a postulated internal semi-elliptical crack the number of design cycles is determined, the flaw aspect ratio is updated and the structural integrity of the cracked vessel is evaluated using the Failure Assessment Diagram (FAD). Different propagation laws, which take into account for negative stress intensity ratio factors R = Kmin/Kmax < 0, are reviewed, because of their high influence on the fatigue life of wire-wound vessels. In addition, this paper presents a number of useful expressions to calculate the stress intensity factor (SIF) for internal semi-elliptical cracks in wire-wound pressure vessels, in order to carry out the numerical integration of the number of cycles, updating the flaw aspect ratio, during the fatigue crack growth.  相似文献   

18.
Cyclic torsion fatigue tests with superimposed static torsion loads are performed with VDSiCr spring steel with shot-peened surface in the high cycle fatigue (HCF) and very high cycle fatigue (VHCF) regime. Fatigue properties are investigated at load ratios R = 0.1, R = 0.35 and R = 0.5 up to limiting lifetimes of 5 × 109 cycles with a newly developed ultrasonic torsion testing method. Increasing the load ratio reduces the shear stress amplitude that the material can withstand without failure. Fatigue cracks are initiated at the surface in the HCF regime. In the VHCF regime, cracks are preferentially initiated internally in the matrix, below the surface layer with compression residual stresses, and less frequently at the surface. Cyclic and mean shear stresses with 50% survival probability in the VHCF regime are presented in a Haigh diagram. Linear line approximation delivers a mean stress sensitivity of M = 0.33 for load ratios between R = −1 and R = 0.5.  相似文献   

19.
Confined crack tip plasticity model is employed to predict time independent fatigue crack growth rate (FCGR) behavior of HAYNES® 282® alloy at temperatures 1200F and 1400F. Crack growth tests were done in lab air, vacuum and steam environments at load ratios R = Kmin/Kmax ranging from 0.05 to 0.5. Calibrated model predicts average cyclic crack growth rate behavior of the material reasonably well. Predictions do not capture the accelerated fatigue crack growth rates observed in the data at low load levels. Such effects are believed to be caused by environmentally driven factors, which are not expected to be predicted by plasticity based models.  相似文献   

20.
Fatigue properties of 2024-T351 aluminium alloy are investigated in the high cycle fatigue (HCF) and very high cycle fatigue (VHCF) regime. Endurance tests are performed with ultrasonic equipment at 20 kHz cycling frequency at load ratios of R = −1, R = 0.1 and R = 0.5 up to 1010 cycles. Additional servo-hydraulic tests between 8 and 10 Hz at R = 0.1 show no frequency influence on fatigue lifetimes. Linear lines in double logarithmic SN plots are used to approximate data. Slope exponents of approximation lines increase with increasing numbers of cycles for all load ratios. Failures above 5 × 109 cycles (R = −1 and R = 0.1) or 1010 cycles (R = 0.5) occur, and no fatigue limit is found. Fatigue cracks leading to failures above 109 cycles are initiated at the surface or slightly below at broken constituent particles or at agglomerations of fractured particles, which are probably Al7Cu2(Fe, Mn). Specimens stressed with more than 1010 cycles at R = −1 without failure show several cracks starting at constituent particles. Maximum crack lengths are 30 μm, which is considerably below grain size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号