首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
以紫外光还原法将氧化石墨(GO)还原成石墨烯(GN), 同时将磷钼酸(PMo12)修饰到石墨烯上, 形成磷钼酸功能化的石墨烯PMo12-GN, 并以此为基底利用电化学还原法制备了Pd/PMo12-GN复合膜催化剂。运用X射线粉末衍射、X射线光电子能谱、扫描电镜、透射电镜等对复合膜的组成、结构、形态进行表征, 结果表明: 实验成功制备了Pd/PMo12-GN复合膜催化剂, 且Pd颗粒均匀分散在PMo12-GN基底上。采用CV、计时电流法、CO溶出伏安法、交流阻抗法等电化学方法研究了Pd/PMo12-GN复合膜的电催化性能。研究结果表明: 制备的复合膜催化剂对甲酸氧化反应的催化活性、催化稳定性、抗CO毒化能力和电子传递能力显著优于商品化的Pd/C催化剂。Pd/PMo12-GN复合膜电催化性能的提高主要是由于Pd纳米颗粒在PMo12-GN基底上均匀分散, 以及PMo12的强氧化能力从而使钯表面一氧化碳等中间产物能迅速氧化去除。  相似文献   

2.
为提高Ti3C2的层间距及电催化性能, 利用碳纳米管(CNT)进行层间微结构调控。Ti3AlC2经HF化学刻蚀法获得层状Ti3C2, 再以羟基化碳纳米管(CNT)以及次氯钯酸钾(K2PdCl4)为原料, 通过超声分散和溶剂热法将贵金属Pd粒子负载到Ti3C2-CNT上, 制得直接甲醇电池阳极催化剂材料Pd/Ti3C2-CNT。采用X射线衍射、扫描电镜以及光电子衍射对样品的形貌和结构进行表征, 考察了CNT对Ti3C2层间微结构的调整效果; 采用循环伏安法、计时电流法以及交流阻抗图谱研究了Pd/Ti3C2-CNT复合催化剂在酸性、碱性溶液中对甲酸、甲醇的电催化性能。结果表明, 复合材料中CNT对Ti3C2有插层作用, 建立了“桥联”效果, 有利于催化剂载体电子传输, 进而提高了Pd/Ti3C2-CNT的电催化性能。  相似文献   

3.
通过化学还原方法制备Pd:Fe原子比(n)为2 : 1、4 : 1、8 : 1的Pdn-Fe/C催化剂。采用TEM、XRD和XPS技术对复合催化剂进行表征。结果显示, Fe加入Pd/C催化剂中, 与Pd形成合金, Pdn-Fe/C催化剂的粒径发生变化; 获得的Pd4-Fe纳米合金粒子在C载体表面分布均匀, 平均粒径为2~3 nm, Fe的加入对Pd/C催化剂晶体结构有很大影响。电化学(CV, LSV, CA)测试表明: 加入Fe提高了Pd/C催化剂的催化性能, Pd/Fe原子比为4 : 1时, Pdn-Fe/C的催化性能最好。当E=0.2 V时, Pd/C电极电流密度为17.71 mA/cm2, 而Pd4-Fe/C电极电流密度可达19.42 mA/cm2。电池测试表明, 以Pd4-Fe/C和Pd/C催化剂为阴极的Mg-H2O2半燃料电池的开路电势均为1.8 V左右, 而当电流密度为180 mA/cm2时, 以Pd4-Fe/C为阴极的电池最大能量密度比Pd/C为阴极的电池高41 mW/cm2。  相似文献   

4.
Pd催化剂对甲酸氧化反应具有出色的电催化性能,适宜的载体有助于改善Pd颗粒的稳定性和分散性,从而使其催化性能得以有效发挥。鉴于此,以硼氢化钠为还原剂,采用化学还原法在不同还原温度(0℃、25℃和50℃)下制备了石墨烯负载Pd颗粒催化剂(Pd/RGO)。采用XRD、Raman、XPS、TGA、TEM和BET等测试方法对该催化剂材料的微观形貌和结构进行了表征,利用循环伏安法和计时电流法测试了催化剂对甲酸氧化反应的电催化性能,着重分析了制备过程中还原温度对催化剂材料结构与电催化性能的影响。结果表明,当还原温度为0℃时,Pd/RGO的比表面积最大,达到261 m~2·g~(-1),Pd颗粒粒径最小,约为4. 16 nm;并且Pd/RGO具有最大的电化学活性面积(3. 02 cm~2),其氧化峰电流密度最高可达1 820 m A·mg~(-1)Pd。  相似文献   

5.
王婧  崔春月  田侠  张雪  王颖  辛言君 《无机材料学报》2020,35(10):1157-1162
电催化还原氯代有机物具有效率高和环境友好等优点。研究采用电化学沉积法在泡沫Ni上制备了非晶态Pd-P/聚吡咯/泡沫Ni(Pd-P/PPy/foam Ni)复合电极, 用于电催化还原法去除水中的五氯苯酚(PCP)。扫描电镜(SEM)、透射电镜(TEM)、X射线衍射分析(XRD)和X射线光电子能谱分析(XPS)等表征结果表明, 掺杂P使Pd催化剂分散均匀, 粒径变小, 且由晶态结构转变为非晶态。由电催化还原PCP发现, 掺杂P明显提高了电极的催化活性。在n(Pd)/n(P)为1 : 3, Pd负载量为0.15 mg/cm 2, H2SO4浓度为0.2 mol/L, 阴极电位为-1.2 V条件下, 处理180 min后, PCP的降解率达到90.8%。另外, Pd-P/PPy/foam Ni电极重复使用8次, 仍保持良好的稳定性。  相似文献   

6.
以氮化碳(g-C3N4)为载体,采用液相还原法制备了一系列Pd-P/g-C3N4催化剂用于甲酸分解制氢,通过优化还原温度和活性组分负载量可以显著提高催化剂性能。采用X射线衍射仪、透射电子显微镜和X射线光电子能谱仪对催化剂的晶相结构、微观形貌、活性组分分布以及价态进行分析,并通过甲酸分解制氢实验测试了催化剂的甲酸分解制氢活性。结果表明:使用次磷酸钠还原剂需要在较高还原温度(90℃)才能实现Pd-P活性组分在g-C3N4载体表面的高度分散,获得较小的纳米粒子,过高或过低的还原温度都不利于制备高性能催化剂。当Pd负载量为8.0%(质量分数)时,2-Pd-P/g-C3N4催化剂表现出最佳催化性能,通过动力学研究和Arrhenius方程计算得到该催化剂的甲酸分解活化能为33.83kJ/mol。  相似文献   

7.
用简单的顺序沉淀法制备了两种具有混合组分的CeO2-ZrO2材料。用X射线衍射(XRD), 拉曼光谱(Raman), X射线光电子能谱(XPS), 氮气吸附-脱附, 氢气程序升温还原(H2-TPR)和储氧量(OSC)研究了不同组合形式对负载的单Pd催化剂性能的影响。结果表明, 两个混和组分的催化剂结构和织构性能都得到了改善。由于贵金属和载体材料之间以及载体材料内部各组分之间的强相互作用, 组合的结构促进了Ce3+和晶格缺陷的形成, 提高了氧的移动性, 并且相应的催化剂老化前后对于CO、C3H8和NO的转化都具有较宽的窗口范围, 说明这种具有混合组分的载体材料在汽油车尾气净化方面具有良好的应用前景。  相似文献   

8.
采用共沉淀法制备了Ce0.65Zr0.35O2(CZ)储氧材料, 分别以乙醇-水、丙醇-水、乙二醇-水、丙三醇-水体系对沉淀物进行陈化, 研究了醇的种类对CZ及其负载的单Pd催化剂性能的影响。对CZ进行了扫描电镜(SEM), N2-吸脱附分析, 对Pd/CZ进行了粉末X射线衍射(XRD)、X射线光电子能谱(XPS)、储氧量 (OSC)和程序升温还原( H2-TPR)的表征, 并考察了三效催化性能。结果表明, 醇的种类对CZ及Pd/CZ的性能有显著影响。在乙醇-水和丙醇-水陈化体系中制备的CZ分散性高, 颗粒堆积松散, 比表面积和孔径大, 孔容高, 且具有优异的热稳定性, 其中丙醇-水陈化体系中制备的CZ老化后比表面积和孔容分别可达28 m2/g和0.1 mL/g, 具有最高的热稳定性, 其负载的单Pd催化剂在老化后对C3H8、CO和NO转化显著优于乙二醇-水和丙三醇-水陈化体系中制备的CZ所制备的催化剂。  相似文献   

9.
《真空》2015,(3)
本实验以碳化钨(WC)增强的Au Pd Pt-WC/C复合催化剂作为直接甲醇燃料电池(DMFC)的阴极催化剂,选取了各组元比例,温度为变量,测试了其作为DMFC催化剂的性能。首先,采用了间歇微波加热法(IHM)制备了纳米级的碳化钨(WC)颗粒,并采用还原法和真空干燥法制备了Au Pd Pt-WC/C复合催化剂,控制Au、Pd、Pt的比例,制备了两组催化剂。通过循环伏安扫描,线性伏安扫描等手段进行电化学测试,表征其氧还原的性能。结果显示,复合催化剂具有高于传统Pt/C催化剂的性能,并且与实验条件息息相关。  相似文献   

10.
采用直接吸附法制备了Pd负载量为0.03% (质量分数)的Pd/γ-Al2O3和Pd/CeO2/γ-Al2O3催化剂, 并用于评价VOCs的催化氧化性能。通过X射线衍射(XRD)、N2吸附-脱附(BET)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)、氢气程序升温还原(H2-TPR)等对催化剂的结构和表面性能进行了表征。结果表明, 在VOCs体积分数为0.1%, 空速(GHSV)为18000 mL/(g·h)条件下, Pd/CeO2/γ-Al2O3催化剂上甲苯、丙酮和乙酸乙酯实现98%转化率的温度分别为205、220和275 ℃, 比Pd/γ-Al2O3分别降低了15、15和20 ℃, 而且即使在较高的气体空速下, Pd/CeO2/ γ-Al2O3催化剂仍能展现出优异的催化氧化性能, 且具有很好的稳定性和选择性。氧化铈的加入对材料的物理化学性质和催化活性有一定的影响, 其中Pd/CeO2/γ-Al2O3含有Ce 3+和高含量的PdO, 活性物种主要以PdO形式均匀地分散在载体γ-Al2O3表面。另外, PdO与非化学计量的CeO2之间的金属-载体相互作用增强了Pd/CeO2/γ-Al2O3催化氧化性能。  相似文献   

11.
采用溶胶–凝胶后硒化法制备了铜锌锡硫硒薄膜, 其薄膜表面平整、无裂纹。通过简化铜锌锡硫前驱体溶胶的制备以及后退火时避免使用硫化氢气体(H2S)等方法使铜锌锡硫硒薄膜的制备工艺得到简化。选用低毒有机物乙二醇为溶剂,Cu(CH3COO)2、Zn(CH3COO)2、SnCl2•2H2O和硫脲为原料, 制备铜锌锡硫前驱体溶胶。XRD、Raman、EDX和SEM 分析表明制备的铜锌锡硫硒薄膜为锌黄锡矿结构, 所有薄膜均贫铜富锌, 用0.2 g硒粉、硒化20 min得到的铜锌锡硫硒薄膜其结晶较好, 表面晶粒可达1.0 μm左右。透射光谱分析结果表明, 随硒含量的增加, 铜锌锡硫硒薄膜的光学带隙从1.51 eV减小到1.14 eV。  相似文献   

12.
磷酸钙材料具有良好的生物相容性, 被广泛应用于生物材料领域。本研究以Ca(CH3COO)2、NaH2PO4?2H2O和双亲嵌段共聚物PLA-mPEG为原料, 通过微波辅助120℃水热反应30 min, 合成了自组装结构磷酸钙微球。以相同的反应原料, 在水和乙二醇混合溶剂中, 通过微波辅助120℃溶剂热反应30 min, 制备了具有多面体结构的磷酸钙。通过X射线粉末衍射(XRD)、透射电子显微镜(TEM)、扫描电子显微镜(SEM)和热重分析(TG)对所制备样品的物相和形貌进行了表征。研究发现乙二醇的加入对磷酸钙的结构和形貌具有显著的影响。以牛血红蛋白为模型, 研究了所制备的两种不同磷酸钙材料的蛋白吸附效果。磷酸钙材料的牛血红蛋白吸附量随装载溶液中牛血红蛋白浓度的增加而增大, 随样品制备过程中的乙二醇加入量的增加而减小。  相似文献   

13.
针对传统ZnO光催化活性不高的问题,采用Zn(CH3COO)2和FeCl3作为ZnO和Fe2O3的前驱体,水热条件下采用“一锅法”制备带状γ-Fe2O3/ZnO异质结光催化剂,采用XRD、BET比表面积测量仪、TEM、紫外-可见漫反射、电子顺磁共振(EPR)等对其晶体化学结构进行表征。在可见光光源下,探究了不同γ-Fe2O3负载量时γ-Fe2O3/ZnO异质结光催化剂对四环素的光催化降解的效果。研究表明,ZnO负载γ-Fe2O3后比表面积和光照吸收显著改善,禁带宽度有所减小,可见光光照120 min,n(Zn)∶n(Fe) (原子比)为20∶1的γ-Fe2O3/ZnO异质结光催化剂对四环素的降解率高达97.2%,多次重复使用后四环素的降解率保持在95%以上。   相似文献   

14.
以醋酸锌(Zn(CH3COO)2·2H2O)为锌源、硝酸银(AgNO3)为掺杂源、纤维素纳米晶体(Cellulose nanocrystal, CNC)为生物模板,通过溶胶-凝胶法结合碳化处理,制备了Ag-ZnO/生物质炭(Biochar)复合材料。采用TEM、XRD、BET、UV-Vis DRS对所制得的Ag-ZnO/Biochar复合材料进行表征。以亚甲基蓝(MB)为模型污染物,评价Ag-ZnO/Biochar复合材料在可见光源照射下的光催化性能,进一步阐明其光催化机制。结果表明:碳化后纳米ZnO仍保持良好的分散性,球形Ag纳米粒子均匀分散在ZnO表面,形成Ag-ZnO/Biochar三元复合材料。与Ag-ZnO和ZnO/Biochar复合材料相比,Ag-ZnO/Biochar复合材料在可见光下的光催化降解率显著提高。这是由于生物质炭赋予复合体系良好的吸附性能,使MB的光催化降解反应持续发生;而Ag纳米粒子的表面等离子体共振(Surface plasmon resonance, SRP)效应则增强了复合体系在可见光区的吸收。其中,当AgNO3、CNC、Zn(CH3COO)2·2H2O的质量比为0.01:0.25:1时,制得的Ag-ZnO/Biochar复合材料在可见光下具有最佳的光吸收性能和MB降解效率:室温条件下,黑暗中吸附30 min,再用可见光照射120 min,即可达到99%的MB降解率,显著高于Ag-ZnO(约23%)和ZnO/Biochar复合材料(约64%)。   相似文献   

15.
通过掺杂修饰催化剂形成捕获陷阱, 可以有效抑制光生载流子的复合, 获得高效的光催化固氮效率。以Bi(NO3)3·5H2O、Zn(CH3COO)2为原料, 采用溶剂热法制备了Zn掺杂的δ-Bi2O3光催化剂。采用X射线衍射(XRD)、扫描电镜(SEM)、能谱分析(EDS)、X射线光电子能谱(XPS)、透射电镜(TEM)、紫外-可见漫反射(UV-Vis DRS)等表征手段对其形貌、元素组成、光吸收等性质进行表征。结果表明, 利用这种简单的水热合成方法获得2D薄层状结构的Zn-δ-Bi2O3。在常温常压下, 研究了Zn-δ-Bi2O3的光催化固氮性能, 并考察了Zn的添加量对光催化固氮活性的影响。结果表明, 可见光照射3 h, 4wt% Zn-δ-Bi2O3的氨生成量可达301.6 μmol·L -1。采用荧光、光电流、光阻抗等手段探讨了光催化固氮机理, 发现掺杂Zn不仅可以促进价带和导带的轨道杂化, 拓宽可见光的利用范围, 而且可以在δ-Bi2O3表面形成陷阱, 降低光生电子和空穴的复合速率, 从而提高光催化固氮效率。  相似文献   

16.
镁基固体酸催化剂在含氟化学品的合成中具有优异的性能。利用模板法制备了高表面积的氟化镁,并考察了SiO2模板剂的用量对其结构及催化性能的影响。通过N2物理吸附、X射线衍射、NH3-程序升温脱附、透射电镜和X射线光电子能谱等表征手段进行了表征, 以1,1-二氟乙烷(HFC-152a, CH3CHF2)脱HF制备氯乙烯(VF,CH2=CHF)为探针对其催化性能进行了研究。结果表明, SiO2模板剂用量对氟化镁的比表面积、晶粒度和酸性有较大影响。当SiO2模板剂用量为14mol%时, 氟化镁比表面积可达304 m2/g, 是不添加SiO2模板剂的2.5倍, 而且Mg晶粒度更小, 配位数更多。随着Mg配位数增多, MgF2的酸性位急剧增多, 在以Lewis酸为活性位的1,1-二氟乙烷脱HF反应中, MgF2的催化活性迅速升高。因此, 以SiO2为模板是制备高活性MgF2催化剂的有效方法。  相似文献   

17.
Cat-CVD method has been applied to the growth of Si–C and Si–C–O alloy thin films. Growth mechanism has been studied with emphasis on the effects of filament materials. Growth rates and alloy compositions were measured for W, Ta, Mo and Pt filaments at the filament temperatures ranging from 1300 to 2000 °C. Si1−xCx films with x ranging from 0.38 to 0.7 could be grown by using single molecule source Si(CH3)2H2 (dimethylsilane). Si–C–O ternary alloy films was successfully prepared by using Si(OC2H5)4 (tetraethoxysilane) and Si(CH3)2(OCH3)2 (dimethyldimethoxysilane) molecules.  相似文献   

18.
Si–C films with the Si compositions ranging from 40 to 70% have been grown by Cat-CVD using dimethylsilane [DMSi, Si(CH3)2H2] compounds. Tetraethoxysilane [TEOS, Si(OC2H5)4] and dimethyldimethoxysilane [DMDMOS, Si(CH3)2(OCH3)2] gas source gave us Si–C–O (C-doped SiOx) films with wide ternary alloy compositions. The dielectric constant of a Si–C film has been evaluated by CV measurements (at 1 MHz) using Al/Si–C/n-Si(001)/Cu MIS structure. The relative dielectric constant value of a Si–C film was estimated to be 3.0. The resistivity of the Si–C layer with 1 mm diameter and 0.24 μm thickness was estimated to be more than 24.5 Gohm·cm. These results gave us promising characteristics of Si–C and Si–C–O films grown by alkylsilane- and alcoxysilane-based Cat-CVD.  相似文献   

19.
A novel soft solution process has been used to prepare LiCoVO4 by reacting Co(CH3CH2COO)2, Li2CO3, NH4VO3 and citric acid. LiCoVO4 powders were successfully prepared at as low as 450 °C in 4 h. Compared to the solid-state reaction processes, the soft solution process greatly reduced the temperature and the time for preparing LiCoVO4. The inverse spinel structure and high crystallinity of the synthesized product has been confirmed by X-ray diffraction. Thermal analysis proves that the phase formation of the compound occurs at about 450 °C. The results of the IR investigations show that the band located at 820 cm−1 corresponds to the stretching vibration mode of VO4 tetrahedron with the A symmetry. SEM examination reveals a spherical grain distribution, the average particle size being typically lower than 1 μm. The quantitative result from ICP-AES analysis is Li0.967Co0.994VO4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号