首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The research performed in this paper was carried out to investigate the computational procedure to design seakeeping optimized ship hull form. To reach the optimized hull form, four stages should be done, which consists of: generate alternative hull form, seakeeping calculations, objective functions and optimization techniques. There are many parameters that may be determined in ship hull form optimization. This paper deals with developed strip theory for determining the seakeeping performance, genetic algorithm (GA) as optimization method, high order equations for curve fitting of the hull form and finally reaching to the minimum bow vertical motion in regular head waves. The Wigley hull is selected as an initial hull and carried to be optimized. Two cases are considered. For the first case, the only form coefficients of the hull (CB, CM, Cw, Cp) are changed and main dimensions (L, B, 7) are fixed. In the second case both hull form and main dimensions are varied simultaneously. Finally, optimized hull form and its seakeeping performances are presented. The results of optimization procedure demonstrate that the optimized hull forms yield a reduction in vertical motion and acceleration.  相似文献   

2.
The creation of geometric model of a ship to determine the characteristics of hydrostatic and hydrodynamic, and also for structural design and equipments arrangement are so important in the ship design process. Planning tunnel high speed craft is one of the crafts in which, achievement to their top speed is more important. These crafts with the use of tunnel have the aero-hydrodynamics properties to diminish the resistance, good sea-keeping behavior, reduce slamming and avoid porpoising. Because of the existence of the tunnel, the hull form generation of these crafts is more complex and difficult. In this paper, it has attempted to provide a method based on geometry creation guidelines and with an entry of the least control and hull form adjustment parameters, to generate automatically the hull form of planning tunnel craft. At first, the equations of mathematical model are described and subsequent, three different models generated based on present method are compared and analyzed. Obviously, the generated model has more application in the early stages of design.  相似文献   

3.
In this paper a hybrid process of modeling and optimization,which integrates a support vector machine(SVM) and genetic algorithm(GA),was introduced to reduce the high time cost in structural optimization of ships.SVM,which is rooted in statistical learning theory and an approximate implementation of the method of structural risk minimization,can provide a good generalization performance in metamodeling the input-output relationship of real problems and consequently cuts down on high time cost in the analysis of real problems,such as FEM analysis.The GA,as a powerful optimization technique,possesses remarkable advantages for the problems that can hardly be optimized with common gradient-based optimization methods,which makes it suitable for optimizing models built by SVM.Based on the SVM-GA strategy,optimization of structural scantlings in the midship of a very large crude carrier(VLCC) ship was carried out according to the direct strength assessment method in common structural rules(CSR),which eventually demonstrates the high efficiency of SVM-GA in optimizing the ship structural scantlings under heavy computational complexity.The time cost of this optimization with SVM-GA has been sharply reduced,many more loops have been processed within a small amount of time and the design has been improved remarkably.  相似文献   

4.
[Objective]Aiming at the problem of too many influencing factors and too little reference data for determining the dimensions of medium-sized cruise ships in the concept phase, a simplified multi-objective optimization method based on the fitting of dimensions and performance is proposed. [Method]First, the dimension relations of medium-sized cruise ships are analyzed and the influence of the latest SOLAS requirements used to determine the optimization range. Second, the influence of cruise ship dimensions on space, resistance, stability and seakeeping are analyzed. Next, based on the principles of genetic algorithms, a multiobjective optimization algorithm with high robustness and high engineering adaptability is determined to establish a multi-objective optimization model for the concept design of medium-sized cruise ships. Finally, the Pareto solution obtained by multi-objective optimization is analyzed to provide initial references for determining the dimensions of the target cruise ship. [Results]Implemented via a genetic algorithm, the optimization program proposed herein is applied in the concept design of a medium-sized cruise ship in order to optimize the initial dimensions, thereby achieving the expected outcome of providing reasonable initial dimensions for cruise ship design. [Conclusion ] The proposed simplified multi-objective optimization model can provide feasible initial dimensions for medium-sized cruise ships in the concept phase. As the Pareto solution obtained by multi-objective optimization has different focuses such as resistance and stability, the most suitable solution needs to be selected according to the design object. © 2023 Chinese Journal of Ship Research. All rights reserved.  相似文献   

5.
The prediction of a ship's resistance especially the viscous wave-making resistance is an important issue in CFD applications. In this paper, the resistances of six ships from hull 1 to hull 6 with different hull forms advancing in still water are numerically studied using the solver naoe-FOAM-SJTU, which was developed based on the open source code package OpenFOAM. Different components of the resistances are computed and compared while considering two speed conditions (12 kn and 16 kn). The resistance of hull 3 is the smallest while that of hull 5 is the largest at the same speed. The results show hull 3 is a good reference for the design of similar ships, which can provide some valuable guidelines for hull form optimization.  相似文献   

6.
A route optimization methodology in the frame of an onboard decision support/guidance system for the ship’s master has been developed and is presented in this paper.The method aims at the minimization of the fuel voyage cost and the risks related to the ship’s seakeeping performance expected to be within acceptable limits of voyage duration.Parts of this methodology were implemented by interfacing alternative probability assessment methods,such as Monte Carlo,first order reliability method(FORM) and second order reliability method(SORM),and a 3-D seakeeping code,including a software tool for the calculation of the added resistance in waves of NTUA-SDL.The entire system was integrated within the probabilistic analysis software PROBAN.Two of the main modules for the calculation of added resistance and the probabilistic assessment for the considered seakeeping hazards with respect to exceedance levels of predefined threshold values are herein elaborated and validation studies proved their efficiency in view of their implementation into an on-board optimization system.  相似文献   

7.
8.
The numerical simulation of wake and free-surface flow around ships is a complex topic that involves multiple tasks: the generation of an optimal computational grid and the development of numerical algorithms capable to predict the flow field around a hull. In this paper, a numerical framework is developed aimed at high-resolution CFD simulations of turbulent, free-surface flows around ship hulls. The framework consists in the concatenation of "tools", partly available in the open-source finite volume library Open FOAM. A novel, flexible mesh-generation algorithm is presented, capable of producing high-quality computational grids for free-surface ship hydrodynamics. The numerical frame work is used to solve some benchmark problems, providing results that are in excellent agreement with the experimental measures.  相似文献   

9.
The numerical simulation of wake and flee-surface flow around ships is a complex topic that involves multiple tasks: the generation of an optimal computational grid and the development of numerical algorithms capable to predict the flow field around a hull. In this paper, a numerical framework is developed aimed at high-resolution CFD simulations of turbulent, free-surface flows around ship hulls. The framework consists in the concatenation of "tools", partly available in the open-source finite volume library OpenFOAM. A novel, flexible mesh-generation algorithm is presented, capable of producing high-quality computational grids for free-surface ship hydrodynamics. The numerical frame work is used to solve some benchmark problems, providing results that are in excellent agreement with the experimental measures.  相似文献   

10.
The problem of ship hull plate processing surface fairing with constraints based on B-spline is solved in this paper. The algorithm for B-spline curve fairing with constraints is one of the most common methods in plane curve fairing. The algorithm can be applied to global and local curve fairing. It can constrain the perturbation range of the control points and the shape variation of the curve, and get a better fairing result in plane curves. In this paper, a new fairing algorithm with constraints for curves and surfaces in space is presented. Then this method is applied to the experiments of ship hull plate processing surface. Finally numerical results are obtained to show the efficiency of this method.  相似文献   

11.
三体船构型复杂,侧体布局对其阻力性能有很大的影响。基于计算流体动力学(Computational Fluid Dynamics, CFD)理论,利用SHIPMDO-WUT软件平台构建一种侧体布局自动优化方法。以某高速三体船为例,进行侧体布局的优化,结果表明:在4个不同弗劳德数下,优化船较母型船的兴波阻力均有所下降,总阻力也相应减小。得出在4个不同弗劳德数下总阻力最小的侧体布局方案,表明该方法的可行性与有效性。研究内容可为三体船减阻优化设计提供参考依据。  相似文献   

12.
邱云明  胡春平 《船舶工程》2015,37(S1):45-49
船型几何模型的参数化表达,是船型多学科设计优化的基础。其作用是为各学科分析和优化提供一个统一的几何模型,并根据各学科分析结果自动修改调整船体型线。文中尝试使用Friendship进行船体完全参数化建模,并使用该软件中的feature编程功能编程实现shipflow型值数据的提取;通过改变一系列重要的船型参数实现变换船型几何模型,以获得满足性能需求的船型。最后利用该软件的优化框架,采用切线搜索法 (Tangent Search, TSearch) 完成1300TEU集装箱船的兴波阻力优化,优化球首和前体船体曲面。结果表明,该参数化方法在改进船型水动力性能方面有很好的效果。  相似文献   

13.
本文针对新一代绿色环保船型研发的需求,在已有性能较为优良的35000吨散货船的基础上,对船体线型作进一步的优化设计。利用势流计算原理及粘性流计算原理分别对船体周围流场特性进行计算分析,结合在船体线型设计方面的经验对原船线型作进一步的改型优化,并通过水池模型快速性试验验证获得了更为优良的船舶线型。经对线型改型优化,既降低了阻力又提高了推进效率,总的节能效果可达9%。说明线型改型优化已取得了较为明显的效果。此外,采用粘性流计算原理进行数值计算应较势流计算原理更为全面合理。特别对原来快速性能已较优良,方形系数CB较大的船型来说,采用粘性流的计算分析法能获得更为合理的结果。  相似文献   

14.
伍蓉晖  田中文  王开贵  何珍 《船舶工程》2020,42(S1):358-360
基于CFD技术对线型优化是目前业界比较流行的做法。本文依托于实船2800TEU船项目,探索基于NAPA和CFD软件的一体化优化(传统经验模式)和基于CAESES和CFD软件的一体化优化(先进数值评估模式)的有机结合,以船模阻力系数为目标函数,对线型优化。结果显示,航速达到优化目标要求。  相似文献   

15.
为降低船舶造价,最大限度地实现船舶的轻量化设计,基于船体尺寸优化的思想,以油船中剖面结构为研究对象,采用法国船级社规范计算工具Mars2000对油船中剖面进行结构定义和载荷计算,通过优化分析软件ISIGHT集成设计变量、约束条件、目标函数,建立参数数据流;开发基于协调共同结构规范(Harmonized Common Structure Rules, HCSR)计算的船舶尺寸优化系统,获得油船中剖面结构设计方案。优化后中剖面面积比原始设计减少6.4%,实现油船的轻量化设计。  相似文献   

16.
基于CFD的船舶球首型线自动优化   总被引:4,自引:0,他引:4  
在满足排水量及航速要求情况下设计出性能优良的船体型线,降低船体阻力、节能降耗是造船界一直所追求的目标。船舶球首的大小、位置和形状对船体兴波影响非常大,因此文章通过船型参数化融合方法,生成一系列球首型线,并以兴波阻力最小为目标,采用遗传算法实现球首型线的自动优化。将上述方法应用于某集装箱船球首型线的自动优化,并进行船舶静水阻力实验,实验表明优化船型在设计航速附近总阻力降低明显,说明文中采用的基于CFD船型自动优化方法是可行的。  相似文献   

17.
A computational fluid dynamics simulation method called WISDAM-X was developed to evaluate the added resistance of ships in waves. The Reynolds-averaged Navier–Stokes (RANS) equation was solved by the finite-volume method and a MAC-type solution algorithm. An overlapping grid system was employed to implement rigorous wave generation, the interactions of ships with incident waves, and the resultant ship motions. The motion of the ship is simultaneously solved by combining the solution of the motion of the ship with the solution of the flow about the ship. The free surface is captured by treatment by the density-function method. The accuracy of WISDAM-X is examined by a comparison with experimental data from a container carrier hull form, and shows a fairly good agreement with respect to ship motion and added resistance. Simulations were also conducted for a bow-form series of a medium-speed tanker to examine the effectiveness of the WISDAM-X method as a design tool for a hull form with a smaller resistance in waves. It was confirmed that the WISDAM-X method can evaluate the added resistance with sufficient relative accuracy and can be used as a design tool for ships.  相似文献   

18.
CAE在船舶性能研究领域的应用   总被引:2,自引:0,他引:2  
论述了计算机辅助工程(Computer Aided Engineering,简称CAE)技术的重要性及其在船舶性能领域应用的可行性。从原理、特点、功能、构成、应用效果及未来发展诸方面介绍了中国船舶科学研究中心在CAE技术领域自主创新的技术成果和在研项目,其中包括船型设计系统、水动力性能预报系统、数字水池试验系统、数值水池仿真系统和船舶技术性能数据库等五大系统。上述诸系统既相互独立,又有机联系,共同构成船舶性能研究的综合系统。  相似文献   

19.
近似技术在船型阻力性能优化中的应用研究   总被引:2,自引:0,他引:2  
船体型线优化过程中,通常要利用高精度的CFD软件对船舶的相关性能进行数值求解。这将耗费大量的时间,导致船型优化效率降低。为有效提高船型优化的效率,提出将近似技术应用于船型自动优化中,以代替CFD数值求解。探讨了样本点选取、样本集形成及近似模型实现途径等问题。以一艘1300TEU集装箱船的线型优化为例,构建船体兴波阻力的Kriging近似模型,并将其应用于球鼻首的优化中。计算结果表明,基于Kriging模型的船型优化是一种实用而且有效的方法。  相似文献   

20.
对某高速客船利用Friendship全参数化建模软件和SHIPFLOW流体计算软件,在进行多航速的船体艏部兴波阻力优化时,需要将特征参数作为设计变量.通过Sobol优化算法对特征参数的灵敏度进行分析,剔除不灵敏的特征参数,可有效地降低设计空间的维数,从而提高计算效率,节约时间和成本.研究结果具有一定的工程实用价值.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号