首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
亮氨酸脱氢酶催化2-酮丁酸生成L-2-氨基丁酸需要辅酶NADH参与,构建Escherichia coli (Leu DH/FDH),通过共表达亮氨酸脱氢酶和甲酸脱氢酶实现了辅酶NADH胞内循环再生。通过产酶条件优化,提高该菌株催化制备L-2-氨基丁酸的效率。结果表明,在5 L发酵罐上,在诱导温度为22℃、诱导剂乳糖质量浓度为8. 0 g/L和诱导时间为17 h的条件下,亮氨酸脱氢酶和甲酸脱氢酶的酶活分别达到79. 2 U/g和216. 1 U/g,催化效果最佳。利用该菌株全细胞为催化剂,耦合苏氨酸脱氨酶,在1 L反应体系中进行了催化反应,L-苏氨酸质量浓度为180 g/L时,无需额外添加辅酶,8 h反应后底物转化率达到99%,L-2-氨基丁酸e. e.值99. 5%以上,时空产率19. 3 g/(L·h)。该研究为建立高效、低成本的L-2-氨基丁酸工业化生产方法提供了基础。  相似文献   

2.
L-苏氨酸是人类必需氨基酸,在医药、食品、饲料领域有广泛的应用。在L-苏氨酸发酵生产过程中,乙醛酸循环起到部分回补途径的功能。本实验利用Red重组技术,以L-苏氨酸生产菌Escherichia coli THRD为出发菌株,构建了icl R基因缺失菌株THRDΔicl R以及不同强度启动子替换ace BAK启动子的菌株THRD P1和THRD P2。通过实时荧光定量PCR检测表明,苹果酸合酶基因(ace B)的表达量分别是原菌的1.89倍、2.11倍以及2.96倍。摇瓶发酵结果显示,THRDΔicl R的L-苏氨酸产量及糖酸转化率分别为42.60±1.23 g/L和32.77 g/g,较原菌THRD(35.32±1.07 g/L和27.17 g/g)分别提高20.61%和20.70%。THRD P1 L-苏氨酸产量及糖酸转化率分别为36.50±1.42 g/L和28.08 g/g,较原菌THRD(35.32±1.07 g/L和27.17 g/g)分别提高3.34%和3.39%。而THRD P2 8 h后菌体生长停滞,L-苏氨酸产量及糖酸转化率分别为8.31±1.31 g/L和20.78 g/g,较原菌THRD(35.32±1.07 g/L和27.17 g/g)分别降低了76.47%和23.52%。综上所述,适当增强乙醛酸循环有利于L-苏氨酸的积累,而过强的乙醛酸循环影响菌体的正常代谢。  相似文献   

3.
L-异亮氨酸是人和动物八种必需氨基酸之一,在生命活动中具有重要地位。乙酰羟基酸合成酶(acetohydroxyacid synthase,AHAS)是L-异亮氨酸合成途径的关键酶(由ilvBN编码),α-酮基丁酸是L-异亮氨酸合成的重要前体。因此强化ilvBN的表达以及增加α-酮基丁酸的供应理论上可提高L-异亮氨酸的合成。cim A编码的甲基苹果酸合成酶可以催化丙酮酸和乙酰-Co A快速生成L-异亮氨酸前体α-酮基丁酸,从而增强主代谢流通量。本文采用基因重组手段将L-异亮氨酸生产菌株Corynebacterium glutamicum YILW ilvBNC操纵子中的启动子替换为强启动子Ptac获得C.glutamicum YILWPtac。摇瓶发酵结果显示该菌株L-异亮氨酸产量和转化率分别较出发菌株提高了14.8%和18.6%。在此基础上过表达cimA基因,获得C.glutamicum YILWPtacp XMJ19cim A,其L-异亮氨酸酸产量和糖酸转化率分别较出发菌株提高了14.5%和42.4%。本研究可为氨基酸生产菌株的选育提供依据。  相似文献   

4.
为了获得高产反式-4-羟脯氨酸的菌株,基于大肠杆菌的代谢网络模型的指导,以大肠杆菌E.coli BL21(DE3)Δput A为出发菌株,通过基因敲除技术成功敲除arg B基因,阻断L-脯氨酸合成的前体物L-谷氨酸的分支代谢途径,增加L-脯氨酸合成的代谢流,构建了精氨酸缺陷型菌株E.coli BL21(DE3)Δput AΔarg B。同时转入表达质粒p UC19-pro B2A-Ptrp2-hyp,该质粒含有突变基因pro B2,该突变基因所编码的谷氨酸激酶受L-脯氨酸的反馈抑制作用显著降低。摇瓶发酵结果表明,在外源添加600 mg/L L-精氨酸时,该重组菌株产反式-4-羟脯氨酸的量达到312.67 mg/L,较菌株E.coli BL21(DE3)Δput A/p UC19-pro B2A-Ptrp2-hyp提高了25.29%。  相似文献   

5.
探究IPTG不同添加时间对大肠杆菌Escherichia coli THRD/pWSK29-ilvA发酵生产α-酮基丁酸菌体生长、产酸、代谢副产物和耗糖的影响.摇瓶发酵结果表明:在菌体处于对数生长中后期,菌体OD600值为10~15时,添加IPTG进行诱导,菌体生物量相对较高为6.5 g/L,α-酮基丁酸积累量最高达到16 g/L,同时糖酸转化率较其他诱导时间高,且副产物乙酸含量明显降低.利用7.5L发酵罐对此诱导条件进行发酵验证,α-酮基丁酸质量浓度为22 g/L,高于已有报道中8 g/L的生产水平.  相似文献   

6.
以L-苏氨酸生产菌Escherichia coli THRD为出发菌株,利用基因重组技术替换ilvLXGMEDA启动子并过表达解除L-异亮氨酸反馈抑制的ilvA和ilvIH,以期获得L-异亮氨酸生产菌.将ilvLXGMEDA启动子替换为强启动子Ptrc并敲除ilvLXGM后获得ILE01菌株,于该菌株中分别过表达解除L-异亮氨酸反馈抑制的ilvIH及共表达解除L-异亮氨酸反馈抑制的ilvA和ilvIH,获得菌株ILE02和ILE03,其L-异亮氨酸产量分别达到1.75 g/L和2.19g/L.针对ILE03 α-酮丁酸积累量过高的问题,通过改变操纵子中ilvA和ilvIH的顺序调节其转录水平,获得菌株ILE04,其L-异亮氨酸产量达2.85 g/L.利用ILE04于5L发酵罐中进行发酵实验,L-异亮氨酸产量、发酵强度及转化率分别为5.23 g/L、0.17 g/(L·h)及4.6%.  相似文献   

7.
构建一种以L-苏氨酸为发酵底物的高值化学品2,5-二甲基吡嗪(2,5-dimethylpyrazine,2,5-DMP)生产菌株,为解决L-苏氨酸产能过剩,实现2,5-DMP生物法生产提供可靠思路。通过利用Bacillus subtilis 168(B.subtilis 168)外源表达不同微生物种属来源的L-苏氨酸脱氢酶(L-threonine dehydrogenase,TDH),并比较其利用L-苏氨酸为底物合成2,5-DMP的产量,挑选出2,5-DMP高产菌种,在此基础上进一步外源表达NADH氧化酶(NADH oxidase,NOX),以促进辅因子再生。实验构建了1株高产2,5-DMP的基因工程菌株B.subtilis 168/pMA0911-tdh(E.c)-nox。该菌株以5.83 g/L的L-苏氨酸为底物,发酵24 h后2,5-DMP的产量高达616.04 mg/L,与对照菌株B.subtilis 168/pMA0911相比,产量提高了22.5倍。在TDH过表达的基础上,NOX的参与有利于2,5-DMP产量的提高。该研究首次实现了2,5-DMP高效的生物转化,一方面缓解了L-苏氨酸产能过剩的困境,另一方面有助于实现高值风味化合物2,5-DMP的生物法生产。  相似文献   

8.
以产L-精氨酸诱变菌株谷氨酸棒状杆菌(Corynebacterium glutamicum)AJC为出发菌株,采用基因组编辑技术对其进行改造。 首先,敲除阻遏蛋白ArgR和FarR,解除反馈阻遏作用;然后,敲除乳酸脱氢酶编码基因ldh和整合鸟氨酸乙酰转移酶编码基因argJ,阻 断乳酸合成途径和增加前体物;最后,敲除谷氨酸分泌蛋白编码基因NCgl1221和整合乙酰谷氨酸激酶基因argB,减弱L-谷氨酸的胞 外分泌,筛选一株L-精氨酸高产菌株。 结果表明,获得一株高产L-精氨酸菌株AJC-4(C. glutamicum AJCΔargRΔfarRΔldh::PtufargJ ΔNCgl1221::PsodargB),该菌株在5 L发酵罐中发酵64 h后,L-精氨酸产量和糖酸转化率分别为78.0 g/L和0.38 g/g,较出发菌株AJC分 别提高21.9%、18.8%;副产物乳酸和L-谷氨酸积累量分别为0.11g/L、0.16 g/L,较出发菌株AJC分别降低96.8%、96.1%。  相似文献   

9.
从中国传统发酵蔬菜中分离获得2株高产γ-氨基丁酸的布氏乳杆菌S37和布氏乳杆菌J68,为进一步提高其产γ-氨基丁酸的能力,对菌株的发酵条件进行优化。结果表明,2株菌产γ-氨基丁酸的最优条件为:发酵时间72 h、发酵温度35℃、底物L-谷氨酸钠浓度400 mmol/L、初始pH 5.0。在此条件下,菌株的γ-氨基丁酸产量分别为233.9 mmol/L和159.3 mmol/L,对应的L-谷氨酸钠转化率分别为58.5%和39.8%。单因素试验发现叶酸、L-半胱氨酸和氯化锰的添加能显著提高菌株的γ-氨基丁酸产量,在此基础上进一步通过响应面试验对其进行优化,发现对于菌株S37最优添加水平分别为8.37 mg/L、0.94 g/L和0.60 g/L,对于菌株J68其最优添加水平分别为10.16 mg/L、0.97 g/L和0.60 g/L。在该最优条件下,2株菌的γ-氨基丁酸产量分别达到312.6 mmol/L和251.2 mmol/L,对应的L-谷氨酸钠转化率分别为78.2%和62.8%。  相似文献   

10.
前期研究构建了1株组成型表达山梨糖脱氢酶(sorbose dehydrogenase,SDH)的大肠杆菌工程菌,该菌株能利用L-山梨糖生产维生素C前体2-酮基-L-古龙酸(2-keto-L-gulonic acid,2-KLG),但对底物L-山梨糖的耐受性较差。为解决这一问题,对该菌株进行适应性进化,并强化了进化菌株发酵生产2-KLG的能力。首先,应用基于微流控技术的全自动高通量微生物液滴培养系统,将出发菌株在不同浓度梯度的L-山梨糖培养基中生长、传代,获得能够耐受高浓度L-山梨糖的进化菌株。在摇瓶上进一步验证,最终获得了1株能耐受高浓度L-山梨糖的进化菌株2-F6。然后在2-F6中共表达了能促进2-酮基-L-古龙酸积累的山梨酮脱氢酶(sorbosone dehydrogenase,SNDH),并在摇瓶水平上对接种量、发酵温度、SNDH诱导时间、IPTG诱导浓度以及L-山梨糖添加量进化了优化,在最优条件下,2-KLG的产量达6. 05 g/L。最终,将摇瓶发酵条件放大至5 L发酵罐后,2-KLG的产量为5. 70 g/L。研究结果为一菌一步发酵法生产维生素C前体2-KLG提供了参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号