首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 453 毫秒
1.
飞秒激光对发射药切割过程的热分析   总被引:1,自引:0,他引:1  
对利用飞秒激光的超快速时间和超高峰值的特性烧蚀切割发射药过程进行了热分析建立丁飞秒激光与发射药作用过程中的传热模型,计算丁药剂内部的温度分布以及烧蚀反应放出的热量;在本研究的计算条件下.确定了在切割过程中,受激光作用的表面温度可达2500℃以上,作用深度小于1.0μm.  相似文献   

2.
激光加工具有“冷加工”和“热加工”鲜明的两重 性,研究飞秒激光加工点火药必须严格控 制“热加工”过程的出现,以保证加工安全和实现微细加工。本文以B/KNO3点火药为样 品,利用ANSYS 软件,模拟单脉冲飞秒激光作用后点火药样品的轴向和径向温度分布,结果表明,样品表面 冲击温度达3337℃。从理论讨论了加工过程的 安全性,得出单脉冲加工点火药的热影响区半径约为4μm,烧蚀深度约 为0.6μm。通过实验分析了其烧蚀机制,并测得点火药的烧蚀阈值为0.284J/cm2。  相似文献   

3.
研究了铜片在不同能量密度的单脉冲飞秒激光下烧蚀的结果。 将飞秒激光烧蚀实验的结果结合双温模型在有限差分法下模拟出的数据图,从而研究不同激光能量密度与烧蚀间的联系。飞秒激光的烧蚀过程属于非平衡烧蚀,按照模拟出的数据,对铜片烧蚀过程中表面电子温度及晶格温度有了直观的认识,进而进行研究,得出整个激光烧蚀中热弛豫规律。 在不同能量密度的飞秒激光烧蚀下对电声相互作用的研究,其模拟结果有利于找出能量密度与飞秒激光烧蚀的关联,而实验图进一步表明了提升飞秒激光能量密度与加工铜材料的加工效率以及加工质量之间的意义。综合以上分析,能够得出随着飞秒激光能量密度的增加,飞秒激光烧蚀期间材料的热弛豫过程加长,烧蚀强度有所增加,材料加工后得出形貌质量提高,其对于飞秒激光烧蚀材料的研究具有很大意义。  相似文献   

4.
微纳米尺度的表面结构在表面工程中有着许多特殊的性能和应用,为了研究飞秒激光制备不锈钢表面微纳结构的机理,基于经典双温模型理论对飞秒激光烧蚀304不锈钢的过程进行了数值模拟计算。经过计算得到了不同激光能量密度、不同烧蚀深度处电子与晶格系统温度的演化规律,确定了飞秒激光单脉冲作用下的烧蚀阈值,通过数值模拟得到飞秒激光烧蚀不锈钢只发生在材料的表面,对内部的材料影响很小。最后使用飞秒激光微纳加工系统在不锈钢表面制备了微纳结构,多边形微孔结构保持了高质量的边缘形貌,在孔的内壁出现了周期性结构。  相似文献   

5.
恒弹性合金的加工对表面质量和加工精度的要求越来越高,为了实现对恒弹合金的精密定量去除,本文探索了采用飞秒激光烧蚀的加工新方法。首先,分析计算了在高强度飞秒激光辐照加工下,恒弹性合金材料的烧蚀阈值;其次,实验研究了飞秒激光脉冲能量和脉冲个数对该材料上烧蚀加工微坑的直径和深度的影响,结果表明:恒弹性合金的飞秒激光烧蚀阈值为0.167 J/cm2;可以通过增大脉冲能量来增大烧蚀坑直径,通过增大脉冲数来增大烧蚀坑深度。脉冲烧蚀坑直径上限为150.64 μm,运用飞秒激光旋切加工方法,可获得直径为500 μm的微孔,提高了飞秒激光烧蚀加工的能力。  相似文献   

6.
本文对飞秒激光加工微纳器件半导体材料过程中的微观烧蚀机理进行了理论研究,基于试探粒子法,采用Fokker-Planck方程,建立了描述飞秒时间尺度内的电子非平衡态输运过程的理论模型,该模型屏弃了弛豫时间和激光吸收系数为常数的假设,给出了屏蔽coulomb势作用下电子输运的漂移系数与扩散系数表达式,考虑了电子逆韧致辐射机制对激光吸收系数的影响,通过数值模拟获得了自由电子非平衡态分布,并在此基础上计算了飞秒激光的烧蚀阀值,讨论了飞秒激光参数对烧蚀半导体材料的影响。  相似文献   

7.
飞秒、皮秒激光烧蚀金属表面的有限差分热分析   总被引:12,自引:4,他引:12  
倪晓昌  王清月 《中国激光》2004,31(3):77-280
为描述飞秒激光烧蚀金属表面过程,对双温方程进行了约化。用有限差分法对飞秒、皮秒脉冲激光在金属表面烧蚀过程的温度场进行了一维数值模拟。分析了在飞秒领域对双温方程约化的合理性。计算模型对电子与光子耦合系数的大小对金属表层电子温度的影响进行了分析。同时考虑不同脉宽、不同能流及功率密度大小的因素。发现电子与晶格耦合系数影响材料表面电子的温升及电子与晶格温度耦合时间;与皮秒激光比较。脉冲功率密度是影响电子最终温度的主要因素;飞秒激光烧蚀金属材料的厚度可达到表层厚度(吸收系数的倒数)量级。  相似文献   

8.
利用烧蚀阈值理论,研究飞秒激光对面齿轮的烧蚀特征,得到了面齿轮的烧蚀阈值。建立烧蚀模型,计算仿真了飞秒激光在单脉冲与多脉冲烧蚀过程中的理论宽度与深度。利用等离子体冲击波传播半径随时间变化的规律,耦合飞秒激光多脉冲烧蚀时的表面残余温度变化,得到等离子体冲击波的动态反冲压力机理图,并得到飞秒激光加工过程中,等离子体冲击波动态反冲压力对烧蚀的凹坑形貌以及扫描隧道与烧蚀平面形貌变化的影响。通过试验验证飞秒激光对面齿轮进行隧道扫描时,随着扫描速度的增加,隧道的直线度降低。高功率条件下,增加相邻扫描道扫描间距,烧蚀后的齿面精度更高。  相似文献   

9.
孵化效应在超快激光烧蚀和加工的过程中起着重要作用。文中通过实验研究了波长为1 030 nm的飞秒激光烧蚀YAG晶体的阈值和孵化效应。在单脉冲作用时,YAG表面发生“温和”烧蚀,具有较小的烧蚀孔径和深度;多脉冲作用时,由于孵化作用的影响,烧蚀阈值随着脉冲数的增加而显著降低。分别采用三种孵化模型,对比研究了其对YAG晶体烧蚀阈值的拟合效果。通过实验和拟合,得到单脉冲作用下烧蚀阈值为Fth,1=(12.27±3.56) J/cm2;多脉冲作用下,饱和孵化阈值为Fth,∞=(1.82±0.37)J/cm2。该研究为飞秒激光精密加工中的能量和脉冲数等参数的控制提供了参考。  相似文献   

10.
金属玻璃飞秒激光烧蚀特性   总被引:1,自引:0,他引:1  
采用飞秒激光对Zr基金属玻璃在空气中进行了表面烧蚀、微打孔与微细切割等过程的研究.通过扫描电镜(SEM)、能量弥散X射线(EDX)能谱分析与透射电镜(TEM)及电子衍射等方法,分析了飞秒激光烧蚀金属玻璃的表面形貌与加工区域发生的相关效应.实验与分析表明加工区域周围无熔融和液滴溅射现象,热影响区极小,并且无晶化现象发生,但飞秒激光微细加工金属玻璃时存在极薄的表面氧化现象.研究结果表明,在适当选择参数的条件下,飞秒激光烧蚀是一种极有前途的金属玻璃无晶化微细加工方法.  相似文献   

11.
为实现对超快激光诱导金属钛改变趋势的定性控制及材料改变范围的定量控制, 开展了飞秒和皮秒脉冲激光分别与金属钛烧蚀的对比实验研究。随后使用激光扫描共聚焦显微镜、X射线光电子能谱和透射电子显微镜分别就激光脉冲时间宽度变化对被烧蚀金属钛的表面形貌与烧蚀深度、化学成分、微结构状态的影响规律进行了分析。研究发现: 随着激光脉冲时间宽度从飞秒增加到皮秒量级, 被烧蚀金属钛的表面形貌质量逐渐变差, 最终烧蚀产物的化学成分愈加复杂, 微结构状态的无定形化程度也随之增加。最终认为伴随激光脉冲时间宽度增加, 金属钛中热累积效应的增强而造成被烧蚀材料内部更为严重的热与机械损伤是导致上述实验现象产生的主要原因。  相似文献   

12.
韩飞  闫寒  周海波  王琼娥 《激光技术》2013,37(4):478-482
超短(飞秒)激光脉冲序列技术能有效地提高激光加工金属的加工精度,它在微/纳制造中具有重要的理论意义和生产价值。为了研究脉冲间隔对激光烧蚀金属加工精度的影响,以过渡金属镍为研究对象,采用双温模型和分子动力学模拟相结合的方法,对飞秒激光脉冲序列(脉冲间隔不同)烧蚀金属镍的过程、现象进行了研究,取得了脉冲序列烧蚀镍薄膜的动态表层电子温度和晶格温度随时间演化的数据和烧蚀区域在不同时刻的快照。结果表明,一定范围内,随着脉冲间隔的增加,脉冲序列烧蚀镍薄膜所产生的纳米粒子更加均匀,烧蚀平面更加平整,初始熔化速度、烧蚀率呈降低趋势,有利于提高加工的精度。  相似文献   

13.
许媛  宁仁霞  鲍婕  侯丽 《激光与红外》2019,49(4):432-437
为了深入理解超短脉冲激光烧蚀金属的机理,特别是烧蚀过程中靶面电子发射带来的影响,本文分析了飞秒脉冲激光烧蚀金属的机理,并在此基础上建立了一维热传导双温模型,模型考虑了电子热导率、热容、电子-晶格耦合系数等参数随温度的变化,以及表面热电子发射和多光子电离导致靶面的能量损失。选择波长为 800 nm,FWHM为100 fs,峰值功率密度为1.2×1017 W/m2 的高斯型单脉冲激光辐照铜靶进行数值模拟。并对计算数据进行分析,结果表明:多光子电离所导致的电子发射比热电子发射要强,但是热电子发射持续的时间长;多光子电离导致的电子发射带走的靶面能量比较大,在分析飞秒烧蚀过程中不可忽略。  相似文献   

14.
飞秒激光加工是一种高精度加工手段,加工中形成的缺陷对其适用性具有重要的影响。本文开展了聚苯乙烯飞秒激光加工试验,研究了聚苯乙烯在飞秒激光加工过程中的缺陷形成机理,以及光强、速度和环境等加工参数对此类缺陷形成的影响,最后得出了对材料形貌影响最小的加工条件。本研究对于指导聚苯乙烯的飞秒激光加工具有重要的意义。  相似文献   

15.
利用时间分辨阴影图研究了脉冲能量在200微焦的多脉冲飞 秒激光烧蚀铝靶的动态过程、并使用 扫描电镜研究了靶材表面烧蚀区域的形貌特征。时间分辨阴影图的记录结果表明,在不同时 间延迟条件 下,飞秒激光烧蚀铝靶形成的冲击波体积和喷射物的空间分布均随着脉冲个数的增加而发生 不同程度的变 化,尤其是单脉冲烧蚀情况下在1ns延时阴影图中观察到的近同心圆条纹会随着脉冲数目增 加逐渐变得模 糊乃至消失。烧蚀区的电子扫描显微镜图像清楚地揭示出烧蚀过程中伴随有液态铝的产生, 其溅射凝固后 在靶材表面形成小球和细丝状微纳结构。实验结果进一步证实了由前序脉冲烧蚀导致的铝靶 表面结构的改 变会对后继脉冲的烧蚀产生显著影响,从而使多脉冲烧蚀表现出明显不同于单脉冲烧蚀的特 性。这些结果 对飞秒激光脉冲沉积薄膜、直写生成表面微结构等应用的工艺参数优化具有很好的指导意义 。  相似文献   

16.
The topography, radial spread, and chemical composition of the slag produced during percussion and trepanning hole drilling techniques using femtosecond laser were investigated. Results of analyses by optical microscopy, scanning electron microscopy, and energy dispersion spectroscopy are presented. While there were no significant differences in the average ablation rates observed when a near infrared femtosecond laser was used, when compared with the ultraviolet nanosecond laser ablation of alumina (Al2O3) ceramics, that of the femtosecond laser provided much cleaner holes. There was an absence of particulates due to re-solidification of molten material around the periphery of the hole. The slag consisted of ultrafine powders formed during condensation of the supersaturated ablation plume. This slag can easily be removed in an ultrasonic bath with a mixture of acetone and water. In combination with trepanning hole drilling, the femtosecond laser produced micro-via holes, in alumina wafers, that were free of cracks and re-cast molten material.  相似文献   

17.
Energy transport in femtosecond laser ablation can be divided into two stages:1) laser energy absorption by electrons during the pulse irradiation, and 2) phase change stage that absorbed energy redistributes in bulk materials leading to material removals. We review challenges in understanding the phase change process mainly for the femtosecond ablation of wide bandgap materials at the intensities on the order of 1013~1014 W/cm2. Thermal vaporization and Coulomb explosion are two major mechanisms considered for material removals. Based on the discussions of energy transport, the estimation equations and unsolved problems for threshold fluence and ablation depth are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号