首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
针对单弓形折流板换热器壳程压降大、连续型螺旋折流板换热器安装制造成本高的缺点,提出一种连续拼接型螺旋折流板换热器。基于流体力学基本原理与周期性充分发展模型理论,对连续拼接型螺旋折流板换热器壳程流场与温度场进行数值模拟,研究表明:雷诺数在2000~10000范围内,当螺旋角为70°时换热器的综合换热性能最好,且是同尺寸单弓形折流板换热器的15~21倍;利用多元线性回归方法推导出了连续拼接型螺旋折流板换热器壳程对流换热系数与压降的准则数关系式。  相似文献   

2.
针对单弓形折流板换热器壳程压降大、连续型螺旋折流板换热器安装制造成本高的缺点,提出一种连续拼接型螺旋折流板换热器。基于流体力学基本原理与周期性充分发展模型理论,对连续拼接型螺旋折流板换热器壳程流场与温度场进行数值模拟,研究表明:雷诺数在2 000~10 000范围内,当螺旋角为70°时换热器的综合换热性能最好,且是同尺寸单弓形折流板换热器的15~21倍;利用多元线性回归方法推导出了连续拼接型螺旋折流板换热器壳程对流换热系数与压降的准则数关系式。  相似文献   

3.
为研究半圆柱空间异形孔板换热器的流动与传热特性,建立换热器简化物理模型,运用ANSYS软件建立CFD模型进行数值模拟,分析了开孔形状与板间距的影响,并对比了半圆柱空间异形孔板换热器与弓形板换热器的联系与区别。研究结果表明:半圆柱异形孔板换热器壳侧流体呈纵向流动,壳侧流体通过孔隙形成射流冲刷管壁,具有强化传热作用;板间距一定,开孔面积相近时,开孔形状对壳侧压降的影响较小,对换热性能的影响稍大;板间距越小壳侧换热系数越高但其综合性能指标越小;圆头三角孔板换热器在板间距30 mm时的壳侧换热系数比40及50 mm方案分别高5.62%,10.06%,综合性能指标低1.44%,2.07%;异形孔板换热器的综合性能指标比弓形折流板换热器平均约高27.89%。  相似文献   

4.
采用FLUENT数值模拟方法,研究了简化模型下弓形折流板和螺旋折流板换热器,对应于不同间距/螺距时,流动参量的变化对换热器整体流动与传热性能的影响,进而研究非等距换热器.结果表明,两种结构对应的壳程压力损失和换热系数均随壳程流量的增加而增大,而螺旋折流板结构单位压降下换热系数大于弓形折流板,并且其性能受折流板螺距变化的影响较小,体现了螺旋折流板结构的优越性.为进一步研究非等距型换热器提供了依据.  相似文献   

5.
径向热管换热器壳程压降数值模拟及参数优化   总被引:1,自引:0,他引:1  
佘文放  马士伟  涂福炳  贾煜 《节能》2012,31(7):18-21
通过对径向热管换热器壳程压力场的数值模拟,分析入口烟气速度对换热器压降的影响规律,并对换热器结构参数进行优化。结果表明:换热器迎风侧压力高于背风侧压力,沿烟气流动方向压力逐渐降低且呈线性分布;换热器压降随入口烟气速度的增加而增加,且其增加速率也相应增大。通过改变换热器结构参数,对换热器壳程压降进行分析研究,得到其结构优化参数:翅片高度小于26.5mm,翅片间距大于6.5mm,热管横向间距108~111mm,纵向间距120~125mm。  相似文献   

6.
刘敏珊  董其伍  刘乾 《节能》2005,(10):3-5,16
基于多孔介质与分布阻力的概念,采用FLUENT软件对单弓形折流板换热器的壳侧流场进行了三维数值模拟,模拟结果与实验结果吻合较好。在此基础上针对折流板换热器壳程压降大、能耗高,存在传热死区等的缺点,提出了壳程流场的改进方案,通过数值模拟可以看到壳程流场改进后不仅具有压降低、场协同性能好、基本无传热死区等特点,而且在一定程度上还提高了管束抗流体诱导振动的性能。  相似文献   

7.
以水为介质,采用k-ε模型,用数值模拟方法研究了5种不同结构的螺旋扭曲椭圆管换热器的管外壳程传热与流阻性能,并和采用椭圆管作为换热部件的换热器进行了比较.研究结果表明,螺旋扭曲椭圆管换热器壳程有较好的强化换热特性,螺旋扭曲椭圆管的几何尺寸和流体流动速度对壳程传热与流阻性能有重要影响.通过数值模拟所获得的规律为螺旋扭曲椭...  相似文献   

8.
为研究管束内的换热规律与管间距的关系,通过分析不同物理模型的流场、换热系数,验证了针对横掠管束充分发展段采用周期性边界条件和对称性边界条件的合理性。采用FLUENT软件,对一定雷诺数范围内、不同的管间距横掠顺排管束周期性充分发展段模型的流动换热进行数值模拟。结果表明:密集排列管束的换热效果明显要比稀疏排列的管束大,且对于纵向管间距S_n/d=1.25的管束,当横向管间距取S_p/d=2.0左右时,管束间的换热达到最强,可以为提高换热器换热能力提供工程实际参考。最后将数值模拟结果与已有的经验公式以及实验结果进行比较,验证数值模拟方法的正确性。  相似文献   

9.
汽轮发电机定子水冷器传热与阻力特性的实验研究   总被引:1,自引:0,他引:1  
为实现汽轮发电机定子水冷器的优化设计,以折流栅-螺旋槽管为强化换热元件,对水冷器进行了传热和阻力特性模化实验研究。获得了管、壳程流速及折流栅间距对传热和阻力特性的影响规律,并采用壳程单位压降的传热系数K/△P。对水冷器综合性能作了评价,将实验结果与前人研究成果作了比较。  相似文献   

10.
针对轴封式核主泵的水平螺旋管换热器复杂的结构特点和特殊的运行环境,采用流热耦合的数值模拟方法分析壳侧流体的流量和温度改变对换热器的流场和温度场的影响,探究换热器壳侧进口参数对换热器内流体流动换热特性的影响规律,并采用相关传热准则数分析换热器强化传热性能。结果表明:水平螺旋管流体受曲率的影响产生离心力,形成了有别于直管流动换热的二次流,速度分布呈内凹的圆弧状,会增强换热器传热效率;随壳侧流速的增加,流体的扰动程度加强,湍流程度提高,同时压力损失无明显变化,换热器传热性能增强;在既定结构和尺寸下,由换热器的传热性能曲线可知,壳侧流量和雷诺数的增加对强化螺旋管传热有显著影响。实际工程应用中可采用适当提高换热器的壳侧流量的方法来加强传热。  相似文献   

11.
Shell and tube heat exchanger with single twisted tube bundle in five different twist angles, are studied using computational fluid dynamics (CFD) and compared to the conventional shell and tube heat exchanger with single segmental baffles. Effect of shell-side nozzles configurations on heat exchanger performance is studied as well. Heat transfer rate and pressure drop are the main issues investigated in the paper. The results show that, for the same shell-side flow rate, the heat transfer coefficient of heat exchanger with twisted tube bundle is lower than that of the heat exchanger with segmental baffles while shell-side pressure drop of the former is even much lower than that of the latter. The comparison of heat transfer rate per unit pressure drop versus shell-side mass flow rate shows that heat exchanger with twisted tube bundle in both cases of perpendicular and tangential shell-side nozzles, has significant performance advantages over the segmental baffled heat exchanger. Optimum bundle twist angles for such exchangers are found to be 65 and 55° for all shell side flow rates.  相似文献   

12.
Twisted oval tube heat exchanger is a type of heat exchanger that aims at improving the heat transfer coefficient of the tube side and also decreasing the pressure drop of the shell side. In the present work, tube side and shell side heat transfer and pressure drop performances of a twisted oval tube heat exchanger has been experimentally studied. The tube side study shows that the tube side heat transfer coefficient and pressure drop in a twisted oval tube are both higher than in a smooth round tube. The shell side study shows that the lower the modified Froude number FrM, the higher the shell side heat transfer coefficient and pressure drop. In order to comparatively analyze its shell side performance of the heat exchanger, a rod baffle heat exchanger with similar size of the twisted oval tube heat exchanger is designed and its performance is calculated with Gentry's method. The comparative study shows that the heat transfer coefficient of the twisted oval tube heat exchanger is higher and the pressure drop is lower than the rod baffle heat exchanger. In order to evaluate the overall performance of the twisted oval tube heat exchanger, a performance evaluation criterion considering both the tube side and shell side performance of a heat exchanger is proposed and applied. The analyze of the overall performance of the twisted oval tube shows that the twisted oval tube heat exchangers works more effective at low tube side flow rate and high shell side flow rate.  相似文献   

13.
基于扭曲椭圆管的换热器是一种新型的新风系统换热器,针对扭曲椭圆管及其应用特点,设计了两种不同结构参数的新风系统换热器。应用FLUENT软件,在夏季工况下对两种不同结构参数的新风系统换热器壳程进行模拟分析,并通过与实验数据的对比,验证计算模型的可靠性。结果显示在相同体积流量下,随着壳程开孔面积的增大,对流换热系数h不断减小,压降Δp不断减小,综合性能系数hp1/3变化不明显;随着螺距的减小,对流换热系数h不断增大,压降Δp不断增大,综合性能系数hp1/3也不断增大;流场分析显示,扭曲椭圆管换热器壳程流道内,呈现出明显沿着扭曲椭圆管壁面的螺旋流,使得空气在流道内充分扰动,增强换热效果。  相似文献   

14.
Fouling is a challenging, longstanding, and costly problem affecting a variety of heat transfer applications in industry. Mathematical models that aim at capturing and predicting fouling trends in shell-and-tube heat exchangers typically focus on fouling inside the tubes, while fouling on the shell side has generally been neglected. However, fouling deposition on the shell side may be significant in practice, impairing heat transfer, increasing pressure drops, and modifying flow paths. In this paper, a new model formulation is presented that enables capturing fouling on the shell side of shell-and-tube heat exchangers including the effect of occlusion of the shell-side clearances. It is demonstrated by means of an industrial case study in a crude oil refinery application. The model, implemented in an advanced simulation environment, is fitted to plant data. It is shown to capture the complex thermal and hydraulic interactions between fouling growth inside and outside of the tubes, the effect of fouling on the occlusion of the shell-side construction clearances, and to unveil the impact on shell-side flow patterns, heat transfer coefficient, pressure drops, and overall exchanger performance. The model is shown to predict the fouling behavior in a seamless dynamic simulation of both deposition and cleaning operations, with excellent results.  相似文献   

15.
In this study, the shell-side heat transfer performance and flow resistance of the shell-and-tube heat exchangers with third-symmetrical, quarter-symmetrical, quarter-unsymmetrical helical baffles and segmental baffles were experimentally obtained. Except for the baffles, these heat exchangers had the same geometrical configuration and number of tubes. Cold and hot water were used as working fluids in the shell and the tube side, respectively. The experiments were done with the cold water volumetric flow rate ranging between 3 and 7 m3/h and the hot water volumetric flow rate constant at 5.5 m3/h. The results show that the heat exchanger with segmental baffles has higher shell-side heat transfer performance and flow resistance than those with helical baffles. Among the three helical baffles used, the third-symmetrical helical baffle offers the highest shell-side heat transfer performance and flow resistance. The quarter-unsymmetrical helical baffle offers the lowest shell-side flow resistance. Its performance of shell-side heat transfer is also the lowest one but close to that of the quarter-symmetrical helical baffle, so the quarter-unsymmetrical helical baffle provides the best conversion efficiency in all heat exchangers mentioned. Compared with the segmental baffle, the shell-side Nusselt numbers that the third-symmetrical, the quarter-symmetrical, and the quarter-unsymmetrical helical baffle offer decrease on the average by about 26%, 37%, and 38%, respectively, and the corresponding shell-side Euler numbers they provide decrease on the average by about 33%, 49%, and 55%, respectively. Thus, the relative shell-side conversion efficiencies increase by about 9%, 25%, and 39% on the average, respectively.  相似文献   

16.
R. SMYTH 《传热工程》2013,34(3-4):90-94
The shell-and-tube heat exchanger (SBE), with its tubes held in plate baffles to produce cross flow of the shell-side fluid, has recently been modified to produce a RODbaffle heat exchanger (RBE) free from tube failure due to vibration. The results showed slightly enhanced heat transfer coefficients with significant reductions in pressure loss, leading to reduced cost of exchangers and in some instances smaller exchangers.  相似文献   

17.
对倾斜角20°有34根管子的周向重叠三分螺旋折流板换热器进行了数值模拟研究,通过在三分螺旋折流板换热器壳侧通道内偏心纵向切面和横切面以及六边形纵向切面上速度矢量流场和压力云图的叠加展示,不仅呈现了壳侧总体螺旋速度的周向分量的轨迹,而且从所呈现的轴向和径向速度分量揭示了二次流和相邻折流板V型缺口处逆向泄漏的踪迹.研究结果表明:流体在螺旋通道内在离心力作用下呈现向外扩张的流动趋势,然后在外围高、中心低的压力分布作用下沿着靠近折流板附近的流速较低的区域向心流动返回轴中心,形成单涡型迪恩二次流;二次流增强了流体的掺混,从而有利于强化传热.  相似文献   

18.
An experimental investigation was performed to study the heat transfer characteristics of temperature-dependent-property engine-oil inside shell and coiled tube heat exchangers. For this purpose, a well-instrumented set-up was designed and constructed. Three heat exchangers with different coil pitches were selected as the test section for counter-flow configuration. Engine-oil was circulated inside the inner coiled tube, while coolant water flowed in the shell. All the required parameters like inlet and outlet temperatures of tube-side and shell-side fluids, flow rate of fluids, etc were measured using appropriate instruments. An empirical correlation existed in the previous literature for evaluating the shell-side Nusselt number was invoked to calculate the heat transfer coefficients of the temperature-dependent-property fluid flowing in the tube-side of the heat exchangers. Using the data of the present study, an empirical correlation was developed to predict the heat transfer coefficients of the temperature-dependent-property fluid flowing inside the shell and coiled tube heat exchangers.  相似文献   

19.
ABSTRACT

Numerical simulation was conducted on oil–water heat transfer in five circumferential overlap trisection helical baffle shell–and–tube heat exchangers (cothSTHXs) with 16 tubes and incline angles of 12°, 16°, 20°, 24°, and 28° and a segmental baffle heat exchanger of the identical tube layout for comparison under laminar flow calculation conditions. The local images represent shell-side flow patterns, and heat transfer properties are presented showing the detailed “secondary vortex flow” and “shortcut leakage flow” patterns to explain the different characteristics of the six schemes. The simulation curves of the heat transfer coefficient and pressure drop are compared with those of the experimental ones, with satisfactory agreement. The average values of the shell-side heat transfer coefficient and the comprehensive index ho/Δpo of the 12° helical scheme are respectively 47% and 51% higher than those of the segmental baffle scheme with about the same pressure drop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号