首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 411 毫秒
1.
对直椭圆管、单向螺旋椭圆扭曲管和双向螺旋椭圆扭曲管换热器进行数值模拟和分析,对三种椭圆管的换热与流阻特性情况进行了比较。结果表明,在层流区与过渡区内,双向螺旋椭圆扭曲管的换热性能和综合性能都比直椭圆管和单向螺旋椭圆扭曲管好,但流动阻力较大。  相似文献   

2.
采用FLUENT数值模拟方法,研究了简化模型下弓形折流板和螺旋折流板换热器,对应于不同间距/螺距时,流动参量的变化对换热器整体流动与传热性能的影响,进而研究非等距换热器.结果表明,两种结构对应的壳程压力损失和换热系数均随壳程流量的增加而增大,而螺旋折流板结构单位压降下换热系数大于弓形折流板,并且其性能受折流板螺距变化的影响较小,体现了螺旋折流板结构的优越性.为进一步研究非等距型换热器提供了依据.  相似文献   

3.
基于扭曲椭圆管的换热器是一种新型的新风系统换热器,针对扭曲椭圆管及其应用特点,设计了两种不同结构参数的新风系统换热器。应用FLUENT软件,在夏季工况下对两种不同结构参数的新风系统换热器壳程进行模拟分析,并通过与实验数据的对比,验证计算模型的可靠性。结果显示在相同体积流量下,随着壳程开孔面积的增大,对流换热系数h不断减小,压降Δp不断减小,综合性能系数hp1/3变化不明显;随着螺距的减小,对流换热系数h不断增大,压降Δp不断增大,综合性能系数hp1/3也不断增大;流场分析显示,扭曲椭圆管换热器壳程流道内,呈现出明显沿着扭曲椭圆管壁面的螺旋流,使得空气在流道内充分扰动,增强换热效果。  相似文献   

4.
螺旋折流板管壳式换热器壳程传热性能及压降的研究   总被引:2,自引:0,他引:2  
本文对螺旋折流板换热器和传统的弓形折流板换热器进行了壳程传热性能和壳程的阻力的对比,同时通过实验方法对25°、40°螺旋角的螺旋折流板和弓形折流板换热器进行了壳程传热性能和壳程阻力的研究,得出螺旋折流板换热器的螺旋流动强化了传热,螺旋折流板换热器的壳程阻力比弓形折流板换热器的壳程阻力小。  相似文献   

5.
针对单弓形折流板换热器壳程压降大、连续型螺旋折流板换热器安装制造成本高的缺点,提出一种连续拼接型螺旋折流板换热器。基于流体力学基本原理与周期性充分发展模型理论,对连续拼接型螺旋折流板换热器壳程流场与温度场进行数值模拟,研究表明:雷诺数在2000~10000范围内,当螺旋角为70°时换热器的综合换热性能最好,且是同尺寸单弓形折流板换热器的15~21倍;利用多元线性回归方法推导出了连续拼接型螺旋折流板换热器壳程对流换热系数与压降的准则数关系式。  相似文献   

6.
针对单弓形折流板换热器壳程压降大、连续型螺旋折流板换热器安装制造成本高的缺点,提出一种连续拼接型螺旋折流板换热器。基于流体力学基本原理与周期性充分发展模型理论,对连续拼接型螺旋折流板换热器壳程流场与温度场进行数值模拟,研究表明:雷诺数在2 000~10 000范围内,当螺旋角为70°时换热器的综合换热性能最好,且是同尺寸单弓形折流板换热器的15~21倍;利用多元线性回归方法推导出了连续拼接型螺旋折流板换热器壳程对流换热系数与压降的准则数关系式。  相似文献   

7.
建立了椭圆管百叶窗翅片换热器三维模型,对椭圆管翅式换热器空气侧传热和流动特性进行了数值模拟,分析管径、管排数、翅片间距对椭圆管翅式换热器空气侧传热流动的影响。结果表明:管排数为1~3时,椭圆管百叶窗翅片换热器空气侧换热系数随换热器管排数的增加而降低,最大降幅达17.1%;椭圆率为2:3的椭圆管翅式换热器综合性能最好,与同周长圆管管翅式换热器相比,换热性能提高了10.1%,降阻幅度达32.3%;随着风速的提高,翅间距对管翅式换热器换热性能及阻力影响逐渐降低。  相似文献   

8.
螺旋隔板换热器的研究及工业应用   总被引:2,自引:0,他引:2  
螺旋隔板换热器主要包括两种不同类型的结构形式,即没有中心管的非整体连续的螺旋隔板换热器和有中心管的整体连续的螺旋隔板换热器.本文总结了国内外学者对螺旋隔板换热器所做的主要研究工作,这包括壳程流体的动力学研究、传热与压降性能研究和数值模拟,并介绍了整体连续型螺旋隔板强化管换热器在工业中的应用.最后,对螺旋隔板换热器的下一步研究工作进行了展望.  相似文献   

9.
针对弓形折流板管壳式换热器流动死区大,压降高的不足,提出外螺旋折流板内斜百叶折流板的双壳程管壳式换热器结构,外螺旋角为15°~40°,内斜百叶折流板倾角为45°。通过三维数值模拟,研究其传热和阻力特性,获得其局部流场,并与传统弓形折流板换热器进行了对比,同时分析了外壳程螺旋折流板不同倾角对其性能的影响。结果表明:双壳程管壳式换热器的壳侧流场分布均匀,流动死区减小,综合性能高于相同壳径和管束布置的弓形折流板管壳式换热器,外螺旋角为30°时,单位压降下的传热系数平均提高了24. 4%。当外螺旋角为20°时,该换热器具有最好的综合性能。  相似文献   

10.
三叶膨胀管是一种新型强化传热管,针对纵向流换热器特点,设计了三种不同管束结构参数的三叶膨胀管自支撑纵向流换热器。应用FLUENT软件及Realizable k-ε湍流模型,对三种不同结构参数的三叶膨胀管换热器壳程强化传热特性展开了数值模拟,并通过与实验数据的对比,验证了计算模型的可靠性。计算了不同壳程介质流速下,三叶膨胀管换热器壳程的换热系数与压降值,并获得了壳程流体流线以及相应的温度场、速度场和二次流分布图。结果发现,在壳程水流速一致的情况下,管束横向间距越大的三叶膨胀管换热器,壳程拥有更高的综合换热性能和更低的压降值,但相应地,换热系数也更低。流场分析显示,壳程流体流线呈现出三维纵向旋流形态,二次流的出现改变了速度场和温度场分布,二次流的强度随着管束横向间距的减小而增大。  相似文献   

11.
螺旋套管换热器传热特性研究   总被引:2,自引:0,他引:2  
根据螺旋套管换热器的结构特点及传热特性,建立了水一水蒸气的流动与传热的三维几何模型.利用Fluem时不同工况下的螺旋套管进行了数值模拟,得出了湍流状态下螺旋套管内流体的温度场、速度场和压力场;利用搭建的螺旋套管换热器试验台,得出多种工况下的传热系数,为螺旋套管换热器的设计计算提供了依据.同时将试验结果和数值模拟结果进行...  相似文献   

12.
Duc-Khuyen Nguyen 《传热工程》2013,34(12):1013-1026
The heat transfer effectiveness of a countercurrent spiral heat exchanger is expressed as a function of number of transfer units, ratio of flow capacity rates, number of spiral turns, and dimensionless start-point angle of spiral (dimensionless angular angle of the start point of a spiral curve constituting the solid wall of the heat exchanger). The heat transfer effectiveness is weakly dependent on the dimensionless start-point angle of spiral, but moderately increases with the number of spiral turns. As the number of spiral turns is larger than 20, the heat transfer effectiveness of the spiral heat exchanger approaches that of a counterflow heat exchanger. The heat transfer effectiveness of the spiral heat exchanger has a maximum. The optimum number of transfer units at the maximum heat transfer effectiveness increases with the number of spiral turns, whereas it increases with a decrease of the ratio of flow capacity rates. In the second-law analysis, an optimum hot flow-to-cold flow capacity-rate ratio is found. For obtaining a large net recovered exergy rate, the spiral heat exchanger needs to possess a large number of transfer units (greater than 2.0) and operate at a near balanced-flow condition. In addition, a small consumed mechanical power is demanded.  相似文献   

13.
A spiral heat exchanger was applied in a ground source heat pump (GSHP) system that is primarily used for residential indoor heating. Studies that have been performed on the heat transfer of spiral heat exchanger have focused on field measurements and numerical analysis; however, theoretical research on the subject is absent in the literature. In this study, a methodology is proposed to analyze the heat performance of a spiral heat exchanger. A ring source model was established and solved analytically to describe the temperature variation of the ground caused by a spiral heat exchanger. The validity of the model was examined by an experiment on the soil temperature variation with a spiral heater. The virtual ring tube surface temperature response of unit ring circle was calculated by a superposition of the contributions of the ring source itself and adjacent ring sources. Furthermore, a fast algorithm was created to compute the average tube surface temperature resulting from the dimensionless temperature rise at a point far from the ring source that is constant when the non-dimensional distance is less than 0.13. The author confirmed that the calculation time of this proposed algorithm decreased by a factor of 100 compared with the traditional integration method. A system designer will find this algorithm helpful when determining the size of a heat exchanger under a required heating load, particularly for different arrangement of spiral heat exchangers.  相似文献   

14.
In order to maximize the economic benefit of ground source heat pump system, it is necessary to grasp the heat transfer rules of ground heat exchanger, the wedgelet finite element method is applied in analyzing heat transfer process of ground heat exchanger. First, existing researches on heat transfer analysis of ground heat exchanger and wavelet finite element method have been summarized. Second, the basic characteristics of wedgelet function are studied. Third, the wedgelet finite element model of analyzing heat transfer rules of ground heat exchanger is constructed using wedgelet function as interpolation function. Finally, the heat transfer simulation analysis of vertical U-type ground heat exchanger is carried out, and results show that the wedgelet finite element has higher precision and efficiency, and the effect of main affecting factors on heat transfer rules of ground heat exchanger is obtained.  相似文献   

15.
The reaction time of hydrogen in metal hydride vessels (MHVs for short) is strongly influenced by the heat transfer from/to the hydride bed. In the present work an experimental study of the geometric and the operating parameters of a finned spiral heat exchanger has been carried out to identify their influence on the performance of the charging process of the MHV. The experimental results show that the charge time of the reactor is considerably reduced, when finned spiral heat exchanger is used. In addition, the effect of different parameters (flow mass and temperature of the cooling fluid, applied pressure, and hydrogen tank volume) has been discussed and obtained results show that a good choice of these parameters is important.  相似文献   

16.
The reaction time of hydrogen in metal-hydride vessels (MHVs for short) is strongly influenced by the heat transfer from/to the hydride bed. In the present work an experimental study of the geometric and the operating parameters of a finned spiral heat exchanger has been carried out to identify their influence on the performance of the charging process of the MHV. The experimental results show that the charge time of the reactor is considerably reduced, when finned spiral heat exchanger is used. In addition, the effect of different parameters (flow mass and temperature of the cooling fluid, applied pressure of hydrogen in the case of absorption and desorption) has been discussed and obtained results show that a good choice of these parameters is important.  相似文献   

17.
连续型螺旋折流板换热器结构及性能研究   总被引:2,自引:0,他引:2  
宋义鑫  谭羽非 《节能技术》2009,27(3):229-232
连续型螺旋折流板换热器一直受限于加工工艺而未能得到广泛应用,本文提出采用加装中芯管的方法,实现了连续型折流板的加工,并给出了连续型折流板螺旋升角和螺旋包络面的计算方法。利用Fluent软件,与现今应用较广泛的1/4椭圆形折流板换热器的流动和换热特性进行模拟比较。结果表明,连续型折流板换热器换热能力提高了近一倍,综合性能系数也提高了近30%,虽然1/4椭圆折流板压力降较小,但其折流板的漏流,也严重降低了传热能力。为在工程中推广应用连续型螺旋折流板换热器,本文提供了理论依据和技术支撑。  相似文献   

18.
This paper investigates the transient heat conduction around the buried spiral coils which could be applied in the ground-coupled heat pump systems with the pile foundation as a geothermal heat exchanger. A transient ring-coil heat source model is developed, and the explicit analytical solutions for the temperature response are derived by means of the Green’s function theory and the image method. The influences of the coil pitch and locations are evaluated and discussed according to the solutions. In addition, comparisons between the ring-coil and cylindrical source models give that the improved finite ring-coil source model can accurately describe the heat transfer process of the pile geothermal heat exchanger (PGHE). The analytical solutions may provide a desirable and better tool for the PGHE simulation/design.  相似文献   

19.
本文介绍了螺旋折流板换热器的几何形状和流动原理,对其传热及压力降的研究现状进行了总结,与弓形折流板换热器相比,螺旋折流板换热器的最大优点降低阻力,增加传热系数。未来的研究重点是流动换热机理以及影响流动换热机理的因素。  相似文献   

20.
Groundwater flows at approximately 1–3 m under the ground surface in a given region. If groundwater flow is present, the performance of a horizontal ground heat exchanger (HGHE), buried in a shallow trench, is enhanced. Nevertheless, owing to the general depth at which groundwater is present, research regarding the heat transfer of a ground heat exchanger (GHE) under conditions with groundwater flow has mainly focused on vertical GHE systems. To the authors’ knowledge, no such studies have addressed HGHEs. From a system design perspective, a prediction tool is needed to consider the groundwater flow, optimize the size of the horizontal heat exchanger, minimize the initial cost and maximize the operational efficiency. Therefore, in this study, a moving ring source model was established and solved analytically to describe the temperature response of a spiral heat exchanger with groundwater flow. In addition, experiments were carried out to study the soil temperature variation during the operation of a spiral heater with different water velocities. The validity of the proposed model was proven by the good agreement between the experimental and calculated results. The average virtual tube surface temperature variations of single ring sources in two different configurations are discussed. Furthermore, the average virtual tube surface temperatures of multiple ring sources extending from single arrangements were computed and approximation algorithms were introduced to reduce the calculation time. The approximation approach has been proven to run thousands of times faster than the initial method, and the calculation results are in 97% agreement with those of the initial method. In summary, this study provides a useful tool for the design of spiral heat exchangers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号