首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A facile preparation of poly(vinyl alcohol) (PVOH) hydrogels and their derivative PVOH/montmorillonite clay aerogels is reported, using water as solvent and divinylsulfone as crosslinking agent, making use of an environmentally friendly freeze drying process. The materials exhibit significantly increased mechanical properties after crosslinking. The compressive modulus of an aerogel prepared from an aqueous suspension containing 2 wt% PVOH/8 wt% clay increased 29-fold upon crosslinking, for example. Crosslinking of the polymer/clay aerogels decreased the onset decomposition temperature as measured by thermogravimetric analysis, and generated a more continuous structure at higher clay contents. Such polymer/clay aerogels are promising materials for low flammability applications.  相似文献   

2.
The feasibility of incorporating ground recycled polyurethane (PU) foam into clay/polymer aerogels was demonstrated, and a range of compositions were prepared and characterized to determine the effect of variation in the formulations on density and mechanical properties of the resulting materials. This study followed a modified combinatorial approach. Initially, experiments were performed in water using either sodium exchanged montmorillonite or laponite clay, poly(vinyl alcohol) (PVOH) solution as the polymer binder, and the recycled PU foam. Freezing and freeze‐drying the aqueous gels produced aerogels, which were characterized through density and mechanical testing, scanning electron microscopy, and thermal gravimetric analysis. The study was expanded by exploring alternative binder chemistries, including the use of an alginate polymer in place of the PVOH or adding a polyisocyanate as a crosslinking agent for PVOH. The effect of recycled PU foam content, clay type and level, and binder type and level on the mechanical properties of the aerogels were determined and will be discussed herein. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42586.  相似文献   

3.
The fabrication of nanocomposites of polyamide 12 (PA12) and cellulose nanocrystals (CNCs) isolated from cotton and tunicates is reported. Through a comparative study that involved solution‐cast (SC) and melt‐processed materials, it was shown that PA12/CNC nanocomposites can be prepared in a process that appears to be readily scalable to an industrial level. The results demonstrate that CNCs isolated from the biomass by phosphoric acid hydrolysis display both a sufficiently high thermal stability to permit melt processing with PA12, and a high compatibility with this polymer to allow the formation of nanocomposites in which the CNCs are well dispersed. Thus, PA12/CNC nanocomposites prepared by melt‐mixing the two components in a co‐rotating roller blade mixer and subsequent compression molding display mechanical properties that are comparable to those of SC reference materials. Young's modulus and maximum stress could be doubled in comparison to the neat PA12 by introduction of 10% (CNCs from tunicates) or 15% w/w (CNCs from cotton) CNCs. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42752.  相似文献   

4.
Cellulose nanocrystals (CNCs) have received considerable attention recently because CNCs can be produced from renewable materials such as straw, wood, cotton, and sea animals (tunicates). CNCs are one of the stiffest organic materials, with an estimated tensile modulus (E) of 80–160 GPa depending on the starting material. In addition, composites incorporating CNCs have been fabricated from a variety of polymer matrices and CNCs have been shown to increase the E significantly and to a lesser extent the tensile strength (TS). A copolymer of poly(vinylidene fluoride) (PVDF), PVDF‐co‐hexafluoropropylene) (PVDFHFP), has received interest over the years in the area of lithium ion battery separator technology. However, the mechanical properties of neat PVDFHFP do not meet the necessary requirements for commercial separators, especially the low E. In this work, novel PVDHFHFP/CNC nanocomposite films were fabricated and characterized. It was found that incorporation of CNCs improves the E and TS. The improvement in mechanical properties of PVDFHFP upon addition of CNCs makes PVDFHFP a more suitable candidate for polymer separators in lithium ion batteries. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

5.
Cellulose–graphene oxide (GO) aerogel composites were successfully prepared from cellulose and GO dispersed in N‐methyl morpholine‐N‐oxide monohydrate, a nontoxic and environmentally friendly solvent, after a freeze‐drying process. Because of the strong interactions between the numerous oxygen‐containing groups located on the surface of GO and the functional groups of the cellulose molecules, the GO monolayers were well dispersed in the three‐dimensional porous structure of the cellulose aerogels. With the addition of 10 wt % GO, the swelling ratios and water contents of the composite cellulose–GO aerogels increased from 468 to 706% and from 82.4% to 87.6%, respectively. The corresponding maximum decomposition temperatures also increased from 335 to 353 °C with increasing GO content from 0 to 10%; this indicated that the thermal stability of the cellulose–GO aerogels was enhanced. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46152.  相似文献   

6.
Ultralight aerogels based on nanofibrillated cellulose (NFC) isolated from coconut shell were successfully prepared via a mild fast method, which included chemical pretreatment, ultrasonic isolation, solvent exchange, and tert‐butanol freeze drying. The as‐prepared NFC aerogels with complex three‐dimensional fibrillar networks had a low bulk density of 0.84 mg/cm3 (specific surface area = 9.1 m2/g and pore volume = 0.025 cm3/g), maintained a cellulose I crystal structure, and showed more superior thermal stability than the coconut shell raw materials. After the hydrophobic modification by methyl trichlorosilane (MTCS), the NFC aerogels exhibited high water repellency properties, an ultrastrong oil‐adsorption capacity (542 times that of the original dry weight of diesel oil), and superior oil–water separation performance. Moreover, the absorption capabilities of the MTCS‐treated NFC aerogels were as high as 296?669 times their own weights for various organic solvents and oil. Thus, this class of high‐performance adsorbing materials might be useful for dealing with chemical leaks and oil spills. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42037.  相似文献   

7.
Novel aerogels (or aerocellulose) based on all‐cellulose composites were prepared by partially dissolving microcrystalline cellulose (MCC) in an 8 wt % LiCl/DMAc solution. During this process, large MCC crystals and fiber fragments were progressively split into thinner crystals and cellulose fibrils. The extent of the transformation was controlled by using cellulose concentrations ranging from 5 to 20 wt % in the LiCl/DMAc solution. Cellulose gels were precipitated and then processed by freeze‐drying to maintain the openness of the structure. The density of aerocellulose increased with the initial cellulose concentration and ranged from 116 up to 350 kg m?3. Aerocellulose with relatively high mechanical properties were successfully produced. The flexural strength of the materials reached 8.1 MPa and their stiffness was as high as 280 MPa. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

8.
Environmentally friendly and lightweight silylated cellulose nanocrystal (SCNCs)/waterborne polyurethane (WPU) composite films that exhibit excellent mechanical properties and water resistance were prepared. The cellulose nanocrystals (CNCs) of the filamentous structure were surface-modified by γ-aminopropyltriethoxysilane (APTES) and then introduced into a castor oil-based aqueous polyurethane (WPU) matrix by in situ polymerization. The morphology and silylation degree of CNCs were characterized by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and Fourier infrared transform spectroscopy at different APTES concentrations. The results showed that the surface of the nanocellulose crystal has the best silylation morphology and thermal stability with incorporation of 6 wt % APTES. The thermal stability, mechanical properties, surface morphology, and water resistance of the nanocomposites were investigated by TGA, tensile test, SEM and optical contact angle, water absorption test, and mechanical property test after immersed in water. It was found that the effective introduction of modified CNCs resulted in a significant increase in tensile strength at high levels, and the thermal stability and hydrophobicity of the material were improved simultaneously, reaching the percolation threshold at a 0.50 wt % SCNCs as determined theoretically. This study provided an approach to the design and development of surface-modified CNCs/vegetable oil-based polymer composites by using an appropriate concentration of silane coupling agent to modify CNCs and improve the compatibility between nanocellulose and vegetable oil-based polymer matrices. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48228.  相似文献   

9.
Effective dissolution of cellulosic macromolecules is the first predominant step to prepare functional bio‐based materials with desirable properties. In this study, we developed an improved dissolution process using a freeze‐drying pretreatment to promote the dissolution of cellulose. Rheological measurements of cellulose solutions and physicochemical characterization of regenerated cellulose films (scanning electron microscopy, Fourier transform infrared spectroscopy, X‐ray diffraction, and thermogravimetric analysis) were performed. Cellulose solution prepared from 5% microcrystalline cellulose (w:v) in the solvent exhibits a Newtonian fluid character while cellulose solutions at higher concentrations show a pseudo‐plastic fluid behavior. Results from physicochemical characterization indicate that a freeze‐drying pretreatment step of cellulose leads to a complete dissolution at 5% concentration while only part of cellulose is dissolved at 10% and 15% concentrations. The results obtained indicated that the use of a freeze‐drying pretreatment step under mild conditions lead to a complete dissolution of cellulose at 5% concentration. The cellulose films prepared from 5% concentration exhibited desirable properties such as good optical transparency, crystallinity, and thermal stability. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44871.  相似文献   

10.
We undertook this study to understand reinforcement mechanism of short cellulose nanocrystals (CNCs) and long cellulose nanofibrils (CNFs) as compatibility agents for improving the interfacial miscibility of poly(vinyl alcohol) (PVA) and poly(ethylene oxide) (PEO) blends. The effects of the two cellulose nanofibers on the morphological, mechanical, and thermal properties of the polymer blends were compared systematically. The light transparency, scanning electron microscopy, and Fourier transform infrared results show that nanocellulose between PVA and PEO eliminated the negative effects generated by the immiscible interface through increased hydrogen bonding. Thermogravimetric analysis and differential scanning calorimetry results show that crystalline region reorganization around the interface facilitated the shift of the polymer blends from multiple phases to a homogeneous phase. According to the Halpin‐Kardos and Quali models, we assumed that the potential for repairing the immiscible interface would have a larger effect than the potential of reinforcement. At the same concentration, polymer blends with CNCs showed greater light transparency, strength, modulus, and crystal structure than with those with CNFs. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45896.  相似文献   

11.
Wood has limitations in strength because of its biostructural defects, including vessels. To overcome this limitation, composite materials can be innovated by breaking wood down into cellulose and lignin and reassembling them for bio‐originating strong structural materials. In this study, an ecofriendly resin was developed that was suitable for cellulose‐based composites. To overcome the low dimensional stability of lignin and to increase its interactions with cellulose, it was blended with poly(vinyl alcohol) (PVA). The PVA–lignin resin was characterized with scanning electron microscopy, Fourier transform infrared spectroscopy, thermal analysis, mechanical tensile testing, and lap‐shear joint testing. The adhesion properties of the PVA–lignin resin increased with increasing PVA content. PVA played the role of synthetic polymer and that of linker between the cellulose and lignin, like hemicellulose does in wood. The PVA–lignin resin exhibited a high miscibility, mechanical toughness, and good adhesion properties for nanocellulose composites. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46655.  相似文献   

12.
Poly(3‐hydroxybutyrate) (PHB)‐based bionanocomposites were prepared using various percentages of cellulose nanocrystals (CNCs) by a solution casting method. CNCs were prepared from microcrystalline cellulose using sulfuric acid hydrolysis. The influence of CNCs on PHB properties was evaluated using differential scanning calorimetry, Fourier transform infrared spectroscopy, X‐ray diffraction, thermogravimetry and tensile testing. Vapor permeation and light transmission of the materials were also measured. Differential scanning calorimetric tests demonstrated that CNCs were effective PHB nucleation agents. Tensile strength and Young's modulus of PHB increased with increasing CNC concentration. Moreover, the PHB/CNC bionanocomposites exhibited reduced water vapor permeation compared to neat PHB and had better UV barrier properties than commodity polymers such as polypropylene. It was found that nanocomposites with 6 wt% of CNCs had the optimum balance among thermal, mechanical and barrier properties. © 2016 Society of Chemical Industry  相似文献   

13.
The preparation of nanocomposites of low‐density polyethylene (LDPE) and cellulose nanocrystals (CNCs) isolated from cotton or produced in situ by the dispersion of microcrystalline cellulose (MCC) is reported. The hydrophobic matrix polymer and the rather polar filler particles appear to be difficult to mix, but it is shown here that composites with significantly improved mechanical characteristics and of homogeneous appearance can be produced using an organic‐solvent‐free two‐step process. This is achieved by first mixing an aqueous slurry of an LDPE powder with an average particle size of <600 μm with aqueous suspensions of CNCs or MCC and removing most, but not all, of the water. Compounding such water‐plasticized mixtures in a roller‐blade mixer and subsequent compression‐molding afford highly transparent films, whose room‐temperature storage modulus is increased by a factor of 2.5 upon incorporation of 15% w/w CNCs or MCC. The results demonstrate that LDPE/nanocellulose composites with improved mechanical properties can be produced by an organic solvent‐free process that appears to be scalable to industrial production scale.

  相似文献   


14.
The mechanical reinforcement of nanocomposites containing nanorods‐like fillers such as cellulose nanocrystals (CNCs) is often interpreted by adapting the classical parallel–series model, assuming a simple hyperbolic dependence between the percolation threshold and aspect ratio. However, such assumptions are valid only for nanorods with high aspect ratio and often are misinterpreting the reinforcement obtained at low volume fraction of filler loading. To elucidate this intriguing scenario, we proposed a new approach and validated it by compiling and reinterpreting some of available literature that represent the experimental reinforcement with CNCs. Our approach showed better accuracy, specifically for the cases of CNC nanorods with lower aspect ratio. We conclude that this route permits a more realistic evaluation of the mechanical reinforcement, where a physical parameter accounting the polymer filler association is introduced. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45254.  相似文献   

15.
Organic photovoltaics (OPVs) offer the potential for ultralow cost mass‐producible photovoltaic devices. Other advantages are light weight and good mechanical flexibility. To further reduce the cost, the replacement of the conventional conducting substrates for cellulose is an interesting choice. There are three main types of nanocellulose materials: nanofibrillated cellulose (NFC), nanocrystalline cellulose (CNC), and bacterial nanocellulose. In this work, the synthesis of two types of nanocellulose substrates and their application in OPVs were achieved. For the first time, the different properties of the cellulose substrates and their influence on the OPV performance were addressed. The nanocellulose substrates CNC and NFC were characterized by XRD, AFM, and DSC. CNC films were more homogeneous, smoother, crystalline and with low roughness. Thus, when comparing the cellulosic substrates, the best device the one based on CNC. The PCE values of the inverted OPV cells were 3.0, 1.4, and 0.5% on to glass, CNC and NFC substrates. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43679.  相似文献   

16.
Composites based on interpenetrating networks (IPNs) of cellulose nanofibril (CNF) aerogels and polyacrylamide are prepared and exhibit robust mechanical, water retaining, and re‐swelling capacities. Furthermore, their swelling behavior is not affected by an increased ionic strength of the aqueous phase. These unprecedented IPNs combine the water retaining capacity of the polyacrylamide with the mechanical strength provided by the CNF aerogel template. The CNF aerogel/polyacrylamide composites exhibit a compressive stress at break greater than 250% compared with a neat polyacrylamide hydrogel. Furthermore, the composites retain their wet compression properties after drying and re‐swelling, whereas the neat polyacrylamide hydrogels fail at a significantly lower stress and strain after drying and re‐swelling. These composite materials highlight the potential of CNF aerogels to strengthen the mechanical properties and reduce the number of fracture defects during the drying and re‐swelling of a hydrogel. These composites show the potential of being optimized for a plethora of applications, especially in the hygiene field and for biomedical devices.  相似文献   

17.
In order to improve the extraction of nanocrystalline cellulose (NCC) from sulfuric acid hydrolysis of chemical pulps, we have studied the effect of hydrolysis conditions on the degree of polymerization (DP), the extent of sulfation, morphological, and solid‐state characteristics of the extracted materials vis‐à‐vis yield. Our results demonstrate that sulfation plays a significant role in (i) determining the yield of, and (ii) imparting the unique solid‐state characteristics to, the extracted, H2O‐insoluble cellulose nanomaterial from sulfuric acid hydrolysis. The hydrolysis process is itself proven to be highly reproducible, and NCC with high crystallinity (>80%) and a yield between 21% and 38% could be extracted from a fully bleached, commercial softwood kraft pulp using 64 wt.% sulfuric acid at 45–65°C after freeze drying. The NCC aggregates, with iridescent patterns typical of chiral nematic materials, are parallelepiped rod‐like structures which possess cross‐sections in the nanometer range and lengths orders of magnitude larger, resulting in high aspect ratios. The Ruland–Rietveld analysis was employed to precisely resolve X‐ray diffraction patterns and obtain information on crystallite size, crystalline and amorphous areas, and crystallinity of the extracted materials.  相似文献   

18.
Biodegradable nanocomposites of Nanocrystalline Cellulose (NCC) and electrospun poly‐(lactic acid) were prepared via a new mixing technique. Dispersion of hydrophilic NCC in hydrophobic PLA was improved through aqueous mixing and freeze drying of perfectly suspended NCC with PLA nanofibers. Freeze drying produced aerogels with good mechanical integrity. The aerogels were further processed via hot pressing. Resulting composites displayed an improvement in mechanical properties, which was greatest at temperatures below the glass transition temperature of PLA. The optimum compositions were found to be in the 0.5–3% NCC (by weight) range. Experiments performed also showed that due to electrospinning, the crystallinity of the PLA slightly increased and this is accompanied by a decrease in its glass transition temperature. Furthermore, adding NCC to the electrospun PLA matrix did not alter the crystallinity of the final composite. The composites investigated proved their potential to be used in packaging and tissue engineering applications. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3345–3354, 2013  相似文献   

19.
纤维素/超细氧化锌复合气凝胶的制备及抗菌性能研究   总被引:1,自引:0,他引:1  
通过碱法先将纤维素(CE)溶解,破坏其氢键,再通过交联技术和冷冻干燥技术制备得到具有很好成形性和柔韧性的纤维素气凝胶。将纤维素气凝胶与溶剂热法制备的超细氧化锌(ZnO)通过浸泡法进行复合,得到了CE/ZnO复合气凝胶。通过X射线衍射(XRD)、扫描电镜(SEM)和元素能量散射(EDS)技术对复合气凝胶进行了结构表征,证明了两者的复合是成功的。对复合气凝胶的抗菌性能进行研究,结果表明:随着ZnO用量的增加,复合气凝胶的抗菌性能也在提高。当纤维素气凝胶与ZnO的质量比为1:2时,所得复合气凝胶CE/ZnO-020抗菌效果达到最好,抗菌率达到95.25%。  相似文献   

20.
In this study, we evaluated the physicochemical properties of the chitosan/nanocellulose composites. Wide‐angle X‐ray scattering was applied to define the supermolecular structure of the materials, the laser diffracting technique was used to characterize the particle sizes, and scanning electron microscopy was used to evaluate the morphologies of the samples. The tensile properties of the composite films were also determined. Cellulose pulp was mercerized with 16% sodium hydroxide to give only cellulose II. Cellulose I and cellulose II were subsequently hydrolyzed with 64% sulfuric acid. As a result, nanocellulose I (NCC I) from cellulose I and nanocellulose II (NCC II) from cellulose II were produced. The mercerization of cellulose pulp contributed to a significant particle size reduction; more than 50% of the particles of the NCC II sample and only 36% of the particles of the NCC I sample were smaller than 100 nm. Chitosan composite films containing 5, 10, and 20% w/w of nanocelluloses were prepared by a solvent casting method. This was the first study investigating the influence of the crystallographic forms of cellulose on the formation of nanocrystals. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42864.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号