首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
In this paper we investigate the robustness of state feedback stabilized semilinear systems subject to inhomogeneous perturbations in terms of input-to-state stability. We consider a general class of exponentially stabilizing feedback controls which covers sampled discrete feedbacks and discontinuous mappings as well as classical feedbacks and derive a necessary and sufficient condition for the corresponding closed-loop systems to be input-to-state stable with exponential decay and linear dependence on the perturbation. This condition is easy to check and admits a precise estimate for the constants involved in the input-to-state stability formulation. Applying this result to an optimal control based discrete feedback yields an equivalence between (open-loop) asymptotic null controllability and robust input-to-state (state feedback) stabilizability.  相似文献   

2.
We show that a nonlinear locally uniformly asymptotically stable infinite-dimensional system is automatically locally input-to-state stable (LISS) provided the nonlinearity possesses some sort of uniform continuity with respect to external inputs. Also we prove that LISS is equivalent to existence of a LISS Lyapunov function. We show by means of a counterexample that if this uniformity is not present, then the equivalence of local asymptotic stability and local ISS does not hold anymore. Using a modification of this counterexample we show that in infinite dimensions a uniformly globally asymptotically stable at zero, globally stable and locally ISS system possessing an asymptotic gain property does not have to be ISS (in contrast to finite dimensional case).  相似文献   

3.
Singular perturbations and input-to-state stability   总被引:1,自引:0,他引:1  
This paper establishes a type of total stability for the input-to-state stability property with respect to singular perturbations. In particular, if the boundary layer system is uniformly globally asymptotically stable and the reduced system is input-to-state stable with respect to disturbances, then these properties continue to hold, up to an arbitrarily small offset, for initial conditions, disturbances, and their derivatives in an arbitrarily large compact set as long as the singular perturbation parameter is sufficiently small  相似文献   

4.
The stabilization problem of sampled-data non-linear systems is considered under the low measurement rate constraint. A multi-rate control scheme is proposed that utilizes a numerical integration scheme to approximately predict the current state. We show that if we design a continuous-time controller for a continuous-time plant so that the closed-loop continuous-time system is input-to-state stable and then discretize the controller and implement it using sample and zero order hold devices, then input-to-state stability property will be preserved for the sampled-data multi-rate closed loop system in a practical sense.  相似文献   

5.
We consider a class of continuous-time cooperative systems evolving on the positive orthant . We show that if the origin is globally attractive, then it is also globally stable and, furthermore, there exists an unbounded invariant manifold where trajectories strictly decay. This leads to a small-gain-type condition which is sufficient for global asymptotic stability (GAS) of the origin.We establish the following connection to large-scale interconnections of (integral) input-to-state stable (ISS) subsystems: If the cooperative system is (integral) ISS, and arises as a comparison system associated with a large-scale interconnection of (i)ISS systems, then the composite nominal system is also (i)ISS. We provide a criterion in terms of a Lyapunov function for (integral) input-to-state stability of the comparison system. Furthermore, we show that if a small-gain condition holds then the classes of systems participating in the large-scale interconnection are restricted in the sense that certain iISS systems cannot occur. Moreover, this small-gain condition is essentially the same as the one obtained previously by [Dashkovskiy et?al., 2007] and Dashkovskiy et al., in press for large-scale interconnections of ISS systems.  相似文献   

6.
We analyze the inherent robustness properties of an economic NMPC formulation in which the controller trades off rate of convergence and economic performance. We show that this controller is input-to-state practically stable under reasonable assumptions. Our formulation does not require dissipativity with respect to the stage costs being optimized, as is required by existing economic MPC formulations. Instead, our formulation enforces dissipation in the form of a Lyapunov inequality that is constructed by using traditional tracking cost terms. Consequently, the proposed approach can be applied to a wider range of systems. We also demonstrate that the controller provides high flexibility to optimize economic performance and remains robust in the face of disturbances.  相似文献   

7.
We consider interconnections of locally input-to-state stable (LISS) systems. The class of LISS systems is quite large, in particular it contains input-to-state stable (ISS) and integral input-to-state stable (iISS) systems.Local small-gain conditions both for LISS trajectory and Lyapunov formulations guaranteeing LISS of the composite system are provided in this paper. Notably, estimates for the resulting stability region of the composite system are also given. This in particular provides an advantage over the linearization approach, as will be discussed.  相似文献   

8.
This paper develops a unified framework for studying robustness of the input-to-state stability (ISS) property and presents new results on robustness of ISS to slowly varying parameters, to rapidly varying signals, and to generalized singular perturbations. The common feature in these problems is a time-scale separation between slow and fast variables which permits the definition of a boundary layer system like in classical singular perturbation theory. To address various robustness problems simultaneously, the asymptotic behavior of the boundary layer is allowed to be complex and it generates an average for the derivative of the slow state variables. The main results establish that if the boundary layer and averaged systems are ISS then the ISS bounds also hold for the actual system with an offset that converges to zero with the parameter that characterizes the separation of time-scales. The generality of the framework is illustrated by making connection to various classical two time-scale problems and suggesting extensions.  相似文献   

9.
延时系统输入状态稳定性的Lyapunov逆理论   总被引:1,自引:0,他引:1  
祝乔  胡广大 《自动化学报》2010,36(8):1131-1136
研究了延时系统输入状态稳定性的局部Lipschitz连续的Lyapunov逆理论. 针对含有任意可测局部本质有界扰动的延时系统, 一个局部Lipschitz连续的Lyapunov泛函被证实是存在的, 如果该系统是鲁棒渐进稳定的. 根据该结论, 延时系统输入状态稳定性的Lyapunov特征被进一步得到.  相似文献   

10.
The input-to-state stability of time-invariant systems described by coupled differential and difference equations with multiple noncommensurate and distributed time delays is investigated in this paper. Such equations include neutral functional differential equations in Hale’s form (which model, for instance, partial element equivalent circuits) and describe lossless propagation phenomena occurring in thermal, hydraulic and electrical engineering. A general methodology for systematically studying the input-to-state stability, by means of Liapunov-Krasovskii functionals, with respect to measurable and locally essentially bounded inputs, is provided. The technical problem concerning the absolute continuity of the functional evaluated at the solution has been studied and solved by introducing the hypothesis that the functional is locally Lipschitz. Computationally checkable LMI conditions are provided for the linear case. It is proved that a linear neutral system in Hale’s form with stable difference operator is input-to-state stable if and only if the trivial solution in the unforced case is asymptotically stable. A nonlinear example taken from the literature, concerning an electrical device, is reported, showing the effectiveness of the proposed methodology.  相似文献   

11.
Input-to-state stability of switched systems and switching adaptive control   总被引:1,自引:0,他引:1  
In this paper we prove that a switched nonlinear system has several useful input-to-state stable (ISS)-type properties under average dwell-time switching signals if each constituent dynamical system is ISS. This extends available results for switched linear systems. We apply our result to stabilization of uncertain nonlinear systems via switching supervisory control, and show that the plant states can be kept bounded in the presence of bounded disturbances when the candidate controllers provide ISS properties with respect to the estimation errors. Detailed illustrative examples are included.  相似文献   

12.
This paper presents a constructive robust adaptive nonlinear control scheme which can be regarded as a robustification of the now popular adaptive backstepping algorithm. The allowed class of uncertainties includes nonlinearly appearing parametric uncertainty, uncertain nonlinearities, and unmeasured input-to-state stable dynamics. The adaptive control laws proposed in this paper do not require any dynamic dominating signal to guarantee the robustness property of Lagrange stability. The numerical example of a simple pendulum with unknown parameters and without velocity measurement illustrates our theoretical results  相似文献   

13.
利用多Lyapunov函数方法、驻留时间法和Gronwall-Bellman不等式研究了一类时滞切换系统的输入-状态稳定性分析问题.从系统输入-状态稳定定义出发,给出了使得一类时滞切换系统输入-状态稳定的充分条件.与已有的方法相比,无需同时满足构造输入-状态稳定控制Lyapunov函数和所有子系统都是输入-状态稳定的条件,为控制器的设计提供了便利.最后,通过算例仿真验证了所提出方法的可行性.  相似文献   

14.
Two kinds of saturated controllers are designed for a class of feedforward systems and the closed-loop resulted is locally input-to-state stable and input-to-state stable, respectively. By the word "locally", it is meant that there are restrictions on the amplitude of inputs. At first, under the guidance of suitable energy functions, two kinds of saturated controllers are designed as locally input-to-state stabilizers for a class of perturbed linear systems, from which explicit gain estimations can be obtained for the subsequent design. Then under the conditions that two subsystems of the feedforward system are respectively of locally input-to-state stability and input-to-state stability, the small gain theory is used to determine saturated degrees for corresponding robust stabilizers. The stability proofs are given by using a new characterization of input-to-state stability that is based on the concept of ultimate boundedness. As an application, saturated controllers are designed for the partial dynamics of a certain inverted pendulum.  相似文献   

15.
A family of time-varying hyperbolic systems of balance laws is considered. The partial differential equations of this family can be stabilized by selecting suitable boundary conditions. For the stabilized systems, the classical technique of construction of Lyapunov functions provides a function which is a weak Lyapunov function in some cases, but is not in others. We transform this function through a strictification approach to obtain a time-varying strict Lyapunov function. It allows us to establish asymptotic stability in the general case and a robustness property with respect to additive disturbances of input-to-state stability (ISS) type. Two examples illustrate the results.  相似文献   

16.
In this note we show that robustness with respect to additive disturbances implies robustness with respect to state measurement errors and additive disturbances for a class of discrete-time closed-loop nonlinear systems. The main result is formulated in terms of input-to-state stability and includes the possible presence of input and state constraints. Moreover, the state feedback controllers are allowed to be discontinuous and set-valued and thus the result also applies to model predictive control laws.  相似文献   

17.
18.
In this note we consider stability analysis of discrete-time discontinuous systems using Lyapunov functions. We demonstrate via simple examples that the classical second method of Lyapunov is precarious for discrete-time discontinuous dynamics. Also, we indicate that a particular type of Lyapunov condition, slightly stronger than the classical one, is required to establish stability of discrete-time discontinuous systems. Furthermore, we examine the robustness of the stability property when it was attained via a discontinuous Lyapunov function, which is often the case for discrete-time hybrid systems. In contrast to existing results based on smooth Lyapunov functions, we develop several input-to-state stability tests that explicitly employ an available discontinuous Lyapunov function.  相似文献   

19.
Input-to-state stability of networked control systems   总被引:9,自引:0,他引:9  
D. Ne&#x;i&#x;  A.R. Teel   《Automatica》2004,40(12):99-2128
A new class of Lyapunov uniformly globally asymptotically stable (UGAS) protocols in networked control systems (NCS) is considered. It is shown that if the controller is designed without taking into account the network so that it yields input-to-state stability (ISS) with respect to external disturbances (not necessarily with respect to the error that will come from the network implementation), then the same controller will achieve semi-global practical ISS for the NCS when implemented via the network with a Lyapunov UGAS protocol. Moreover, the ISS gain is preserved. The adjustable parameter with respect to which semi-global practical ISS is achieved is the maximal allowable transfer interval (MATI) between transmission times.  相似文献   

20.
In recent years, the ability to accommodate various nonlinearities has become even more important to support systems design and analysis in a broad area of engineering and science. In this line of research, this paper discusses usefulness of the notion of integral input-to-state stability (iISS) in assessing and establishing system properties through interconnection of component systems. The focus is to construct Lyapunov functions which explain mechanism and provide estimate of stability and robustness of interconnected systems. Unique issues arising in dealing with iISS systems are reviewed in comparison with interconnections of input-to-state stable (ISS) systems. The max-separable Lyapunov function and the sum-separable Lyapunov function which are popular for ISS and iISS, respectively, are revisited. The max-separable function cannot be qualified as a Lyapunov function when component systems are not ISS. Level sets of the max-separable function are rectangles, and the rectangles cannot be expanded to encompass the entire state space in the presence of non-ISS components. The sum-separable function covers iISS components which are not ISS. However, it has practical limitations when stability margins are small. To overcome the limitations, this paper brings in a new idea emerged recently in the literature, and proposes a new type of construction looking at level sets of a Lyapunov function. It is shown how an implicit function allows us to draw chamfered rectangles based on fictitious gain functions of component systems so that they provide reasonable estimates of forward invariant sets producing a Lyapunov function applicable to both iISS and ISS systems equally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号