首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diazinon is a widely used organophosphorus insecticide that is an important pollutant in aquatic environments. The chemical removal of diazinon has been studied using UV radiation, ozone, Fenton's reagent, UV radiation plus hydrogen peroxide, ozone plus hydrogen peroxide and photo‐Fenton as oxidation processes. In the photodegradation process the observed quantum yields had values ranging between 2.42 × 10?2 and 6.36 × 10?2 mol E?1. Similarly, the ozonation reaction gave values for the rate constant ranging between 0.100 and 0.193 min?1. In the combined systems UV/H2O2 and O3/H2O2 the partial contributions to the global oxidation reaction of the direct and radical pathways were deduced. In the Fenton's reagent and photo‐Fenton systems, the mechanism of reaction has been partially discussed, and the predominant role of the radical pathway pointed out. Additionally, the rate constant for the reaction between diazinon and the hydroxyl radicals was determined, with the value 8.4 × 109 L mol?1 s?1 obtained. A comparison of the different oxidation systems tested under the same operating conditions revealed that UV radiation alone had a moderate oxidation efficiency, which is enhanced in the case of ozone, while the most efficient oxidant is the photo‐Fenton system. Copyright © 2007 Society of Chemical Industry  相似文献   

2.
BACKGROUND: Large amounts of pharmaceutical compounds are consumed throughout the world, and after being metabolized in humans are discharged into water streams. Some of them are not completely removed in wastewater treatment plants and, as a result, they are found in some effluents as well as in surface and ground waters. RESULTS: Four pharmaceutical compounds (metoprolol, naproxen, amoxicillin and phenacetin) frequently found in wastewaters were selected to be individually photo‐oxidized in ultra‐pure water by monochromatic UV radiation. The influence of independent variables (pH, temperature, and additional presence of hydrogen peroxide) was established, and first‐order rate constants and quantum yields evaluated. The compounds were also oxidized using Fenton's reagent and, after establishing the influence of the operating conditions (ferrous ions and hydrogen peroxide concentrations, pH and additional presence of UV radiation), the rate constants for the radical reaction between each pharmaceutical and hydroxyl radicals were determined. Finally, the simultaneous photo‐oxidation of mixtures of the selected pharmaceuticals in several types of water (commercial mineral water, groundwater and reservoir water) was performed by means of UV radiation alone and by the combination UV/H2O2. The influence of the independent variables in these processes was discussed, and the kinetic study allowed the determination of various rate constants for each compound. CONCLUSION: As the pharmaceutical concentrations theoretically calculated by the proposed kinetic model agree well with the experimental results obtained, this model constitutes an excellent tool to predict the elimination of these compounds when they are present in different natural waters. Copyright © 2009 Society of Chemical Industry  相似文献   

3.
The chemical treatment of cork‐processing wastewater by ozonation, alone and in combination with hydrogen peroxide and UV radiation was investigated. A reduction of the chemical oxygen demand (COD) ranging from 42% to 76% was obtained during ozonation after 3 h of reaction, depending on the experimental conditions. The additional presence of hydrogen peroxide and UV radiation enhanced the efficiency of the ozonation treatment due to the contribution of the OH radicals formed in the decomposition of ozone. Thus, final reductions of the COD higher than 90% and a complete elimination of phenolic compounds and absorbance at 254 nm were achieved in both Advanced Oxidation Processes (AOPs), O3/H2O2 and O3/UV. Therefore the effluent resulting from the ozonation treatments can be reused in the cork‐processing industry. In a second step, the chemical treatment was conducted by means of UV radiation alone and by the action of hydroxyl radicals, which were generated by the following AOPs: UV/H2O2, Fenton's reagent, and photo‐Fenton system. The single photochemical process resulted in 9% of the organic matter present being removed, while the AOPs significantly enhanced this reduction with values in the range 20–75%. Kinetic studies for both groups of treatments were performed, and apparent kinetic rate constants were evaluated. In the ozone‐based experiments, the rate constants ranged from 1846 to 10922 dm3 mol?1 O3 h?1, depending on the operating conditions. In the oxidation experiments using oxidants other than ozone, the rate constants varied between 0.06 and 1.19 h?1. Copyright © 2004 Society of Chemical Industry  相似文献   

4.
Oxidation of p‐hydroxybenzoic acid in aqueous solution by the photo‐assisted Fenton reaction (Fe2+ + H2O2 + UV) has been studied. The effects of ferrous ion concentration (0.05, 0.14 and 0.29 mmol dm?3), temperature (10, 20, 30 and 40 °C), and initial hydrogen peroxide concentration (0.7, 1.4, 2.2 and 2.9 mmol dm?3) on the p‐hydroxybenzoic acid conversion were established. Experimental results indicate that the kinetics of this oxidation process fits pseudo‐first‐order kinetics well. The overall kinetic rate constant was split into two components: direct oxidation by UV radiation (photolysis) and oxidation by free radicals (mainly OH·) generated in the system. The importance of these two reaction paths for each specific value of ferrous ion concentration, temperature and initial hydrogen peroxide concentration was evaluated. A semi‐empirical expression is proposed for the overall reaction rate which takes into account both oxidation pathways and is a function of operating variables. © 2001 Society of Chemical Industry  相似文献   

5.
In this study, phenol, aromatic, and non‐biodegradable organic matter were investigated and found to be removed from the model solution through chemical oxidation using Fenton reagent. The effects of the initial phenol concentration, hydrogen peroxide, and ferrous sulfate concentrations on the removal efficiency were investigated. Performance of the chemical oxidation process was monitored with phenol and COD (Chemical Oxygen Demand) analyses. In the experimental studies, phenol removal of over 98 % and COD removal of nearly 70 % were achieved. The optimum conditions for Fenton reaction both for initial phenol concentrations of 200 and 500 mg/L were found at a ratio [Fe2+]/[H2O2] (mol/mol) equal to 0.11. According to the results, chemical oxidation using Fenton reagent was found to be too effective, especially for phenol removal. However, this method has limited removal efficiency for COD.  相似文献   

6.
The influence of different types of iron salts (i.e., ferrous or ferric cations with sulphate, nitrate or chloride anions) on the reaction between coarse thermomechanical pulp and acid hydrogen peroxide (Fenton chemistry) was studied when the initial pH was 3.2 and 5.3. Also, ferric ions chelated with EDTA or EDG at different molar ratios were compared with ferrous sulphate when the initial pH was extended from about 3 to 8. Different anions of ferric ion salt gave a similar catalytic effect. At an initial pH of 7–8, the ferric-EDTA catalyzed reaction resulted in similar or higher hydrogen peroxide consumption and more detectable hydroxyl radicals than the ferrous sulphate catalyzed reaction, but less reaction with the pulp was indicated. Between pH 5–8, using Fe-EDG as a catalyst gave higher hydrogen peroxide consumption and more detectable hydroxyl radicals than if using ferrous sulphate; however, the measured effect on the pulp was similar or less.  相似文献   

7.
BACKGROUND: The combination of electrochemical oxidation using a Ti/RuO2? IrO2 anode with hydrogen peroxide has been used for the degradation of Crystal Violet. The effect of major parameters such as initial pH, hydrogen peroxide concentration, current density, electrolyte concentration and hydroxyl radical scavenger on the decolorisation was investigated. RESULTS: The decolorisation rate increased with initial pH and hydrogen peroxide concentration, but decreased with electrolyte and radical scavenger concentration. The decolorisation rate increased with current density, but the increase became insignificant after current density exceeded 47.6 mA cm?2. On the other hand, hydrogen peroxide decomposition rate increased with initial pH and current density, but decreased with electrolyte and radical scavenger concentration. The amount of hydrogen peroxide decomposed during 30 min reaction increased linearly with hydrogen peroxide dosage. The main intermediates were separated and identified by gas chromatography–mass spectrometry (GC–MS) technique and a plausible degradation pathway of Crystal Violet was proposed. At neutral pH, the electrochemical process in the presence of hydrogen peroxide was more efficient than that in the presence of Fenton's reagent (electro‐Fenton process). CONCLUSION: The anodic oxidation process could decolorise Crystal Violet effectively when hydrogen peroxide was present. Almost complete decolorisation was achieved after 30 min reaction under the conditions 2.43 mmol L?1 hydrogen peroxide, 47.6 mA cm?2 current density and pH0 7, while 62% COD removal efficiency was obtained when the reaction time was prolonged to 90 min. Copyright © 2010 Society of Chemical Industry  相似文献   

8.
The catalytic properties of granular activated carbon (GAC) in GAC/iron oxide/hydrogen peroxide (H2O2) system was investigated in this research. Batch experiments were carried out in de-ionized water at the desired concentrations of ethylene glycol and phenol. Rate constants for the degradation of hydrogen peroxide and the formation rate of iron species were determined and correlated with mineralization of ethylene glycol at various GAC concentrations. The observed first order degradation rate of hydrogen peroxide in the absence of iron oxide and organic matter increases linearity with the increasing of the GAC concentration. The decomposition rate of hydrogen peroxide was suppressed significantly as the solution pH became acidic or by reducing the surface area of the GAC. The reduction of the surface area was obtained by loading an organic compound (such as phenol) on the GAC or by using the oxidizing agent (H2O2). The addition of both chemicals, phenol and H2O2, affects mainly the surface area of the small pores, resulting in reducing the catalytic activity inside the micropores.The catalytic properties of the GAC were used to accelerate the formation rate of the ferrous ions, which is known in the literature to be the limiting rate reaction in the classic Fenton like reagent. It was shown that the ethylene glycol mineralization rate was increased by more than 50%.Finally, optimization of the GAC consumption leading to the fastest mineralization of the ethylene glycol, resulting in decreasing of the decomposition rate of H2O2 while enhancing the generation rate of ferrous ions.  相似文献   

9.
Fenton试剂·OH生成率的影响因素研究   总被引:3,自引:0,他引:3  
提高Fenton试剂在废水处理中的氧化功效,关键在于提高体系中·OH的生成率.本文采用邻二氮菲-Fe(Ⅱ)光度法间接测定·OH,研究了Fenton试剂中·OH表观生成率的主要影响因素:Fe2+的浓度、H2O2的浓度、pH值及反应时间,并结合实际应用,考察了工业废水中常见无机离子对·OH生成率的影响,从而为Fenton试剂法更好地应用于废水处理提供了技术依据.  相似文献   

10.
This work evaluates Fenton oxidation for the removal of organic matter (COD) from cork‐processing wastewater. The experimental variables studied were the dosages of iron salts and hydrogen peroxide. The COD removal ranged from 17% to 79%, depending on the reagent dose, and the stoichiometric reaction coefficient varied from 0.08 to 0.43 g COD (g H2O2)?1 (which implies an efficiency in the use of hydrogen peroxide varying from 17% to 92%). In a study of the process kinetics, based on the initial rates method, the COD elimination rate was maximum when the molar ratio [H2O2]o:[Fe2+]o was equal to 10. Under these experimental conditions, the initial oxidation rate was 50.5 mg COD dm?3 s?1 with a rate of consumption of hydrogen peroxide of 140 mg H2O2 dm?3 s?1, implying an efficiency in the use of the hydrogen peroxide at the initial time of 77%. The total amount of organic matter removed by Fenton oxidation was increased by spreading the H2O2 and ferrous salt reagent over several fractions by 15% for two‐fractions and by 21% for three‐fractions. Copyright © 2004 Society of Chemical Industry  相似文献   

11.
Microwave (MW) and high‐intensity ultrasound (US) provide innovative techniques for the degradation of persistent organic pollutants (POPs). When Fenton's reagent is used to treat industrial wastes, organic pollutants are degraded by highly reactive hydroxyl radicals (HO·) that can oxidize almost any organic compound to carbon dioxide and water. These reactions, when carried out under US or MW, are faster and much more efficient. The present work assesses the combined effect of US and MW using a new flow reactor developed in our laboratory. In this 5 L pilot reactor the liquid was pumped in parallel through a modified domestic MW oven and through a cell where it was irradiated with two US generators working at 20 and 300 kHz, while MW irradiation took place in a modified domestic oven. We studied the degradation of 2,4‐dibromophenol (0.1 g L?1 in water) by Fenton's reagent, assessing the contribution of each energy source to the overall effect, and found that MW and US‐300 kHz played the main role. A modest amount of oxidant (6 mL 30% H2O2 per 1 L of polluted water) sufficed to achieve complete degradation within 6 h, at which time organic compounds were no longer detectable. Even if no Fenton's reagent was added, about one half of the pollutant was degraded after 3 h irradiation. Copyright © 2007 Society of Chemical Industry  相似文献   

12.
H2O2 used in the photo-Fenton reaction with iron catalyst can accelerate the oxidation of Fe2+ to Fe3+ under UV irradiation and in the dark (in the so called dark Fenton process). It was proved that conversion of phenol under UV irradiation in the presence of H2O2 predominantly produces highly hydrophilic products and catechol, which can accelerate the rate of phenol decomposition. However, while H2O2 under UV irradiation could decompose phenol to highly hydrophilic products and dihydroxybenzenes in a very short time, complete mineralization proceeded rather slowly. When H2O2 is used for phenol decomposition in the presence of TiO2 and Fe–TiO2, decrease of OH radicals formed on the surface of TiO2 and Fe–TiO2 has been observed and photodecomposition of phenol is slowed down. In case of phenol decomposition under UV irradiation on Fe–C–TiO2 photocatalyst in the presence of H2O2, marked acceleration of the decomposition rate is observed due to the photo-Fenton reactions: Fe2+ is likely oxidized to Fe3+, which is then efficiently recycled to Fe2+ by the intermediate products formed during phenol decomposition, such as hydroquinone (HQ) and catechol.  相似文献   

13.
Currently, organic polymers are adopted in alum sludge (aluminum-coagulated drinking water treatment sludge) conditioning. However, there are important concerns regarding the use of these polymers because of the unknown and long-term effects of the potential release of excess polymer to the surrounding environment when the sludge is landfilled. Therefore, as an initial action, this study aimed at investigating alternative chemical conditioning methods and focused mainly on exploiting Fenton (Fe2+/H2O2) and Fenton-like (Fe3+/H2O2) reagents as the conditioner. Experiments have been conducted to test the effectiveness of Fenton's reagent (containing the ferrous salts of chloride, sulfate, or oxalate), Fenton-like reagent (containing ferric salts of chloride and sulfate), and the coagulation method using FeCl3 for alum sludge conditioning at constant hydrogen peroxide and iron salt concentrations of 125 and 20 mg/g DS (dry solids), respectively. The effectiveness on dewaterability of the alum sludge demonstrated that the maximum reduction (%) of SRF (specific resistance to filtration) and CST (capillary suction time) of 74% and 47%, respectively, can be obtained when Fenton's reagent was adopted for sludge conditioning. Such reduction of 64% for SRF and 38% for CST can be achieved when Fenton-like reagents were applied.  相似文献   

14.
In the present study, Fenton and sono‐Fenton processes were applied to the oxidative decolorisation of synthetic textile wastewater including CI Reactive Orange 127 and polyvinyl alcohol. Process optimisation [pH, ferrous ion (Fe2+) and hydrogen peroxide (H2O2)], kinetic studies and their comparison were carried out for both of the processes. The sono‐Fenton process was performed by indirect sonication in an ultrasonic water bath, which was operated at a fixed 35‐kHz frequency and 80 W power. The optimum conditions were determined as [Fe2+] = 20 mg l?1, [H2O2] = 15 mg l?1 and pH = 3 for the Fenton process and [Fe2+] = 25 mg l?1, [H2O2] = 5 mg l?1 and pH = 3 for the sono‐Fenton process. The colour removals were 89.9% and 91.8% by the Fenton and sono‐Fenton processes, respectively. The highest decolorisation was achieved by the sono‐Fenton process because of the production of some oxidising agents as a result of sonication. Consequently, ultrasonic irradiation in the sono‐Fenton process slightly increased the colour removal to 91.8%, while decreasing the hydrogen peroxide dosage to one‐third of that of the Fenton process.  相似文献   

15.
Pulsed electrical discharges in water produce a variety of oxidative and reductive species including hydroxyl radicals, hydrogen peroxide, and hydrogen. The reaction of ferrous ions with hydrogen peroxide (Fenton's reaction) provides additional hydroxyl radicals. Previous experiments with pulsed electrical discharges in water have shown that when ferrous sulfate is used as an electrolyte with a platinum high voltage electrode significantly higher organic compound degradation can be obtained in comparison to the case with an electrode made of nickel-chromium. In the work presented here, it is shown that particles emitted into solution from the platinum high voltage electrode enhance the production of hydroxyl radicals by forming a catalytic cycle between ferric and ferrous ions. The ferrous ions are converted to ferric ions by the Fenton's reaction utilizing hydrogen peroxide from the electrical discharge and the ferric ions are in turn converted to ferrous ions by reactions on the platinum particles emitted into solution from the high voltage electrode with molecular hydrogen formed by the electrical discharge. Based upon experiments with various scavengers it is concluded that the catalytic effect of the platinum particles is due to the presence of adsorbed hydrogen, while in contrast the nickel-chromium, which does not adsorb hydrogen, high voltage electrode and particles emitted by this electrode have no effect on the ferric ion regeneration.  相似文献   

16.
Fenton反应的应用及其影响因素的研究   总被引:6,自引:0,他引:6  
施跃锦 《贵州化工》2009,34(2):30-34
Fenton试剂是亚铁离子和过氧化氢的组合,具有强氧化性,在环境污染治理方面得到了广泛的应用。本文主要研究Fenton反应在废水处理上的作用,为Fenton反应的进一步研究提供参考。  相似文献   

17.
Degradation of 2-chlorophenol by Fenton and photo-Fenton processes   总被引:1,自引:0,他引:1  
The photodegradation of a specific organic pollutant using the Fenton and the photo-Fenton processes has been examined in aqueous solution. The applications of the Fenton process and the photo-Fenton process to the degradation of 2-chlorophenol (2-CP) were investigated. The dependence on the following experimental conditions had been evaluated: initial pH (1.0–9.0), hydrogen peroxide (0.67–2 mM), ferrous ions (0.1–2 mM), initial concentration of 2-CP (0.1–2 mM). The optimal experimental conditions were 1 mM H2O2, 1 mM ferrous ion and pH 3.0. Under the optimal conditions, the degradation efficiency of 2-CP in the photo-Fenton process was enhanced 4% more than that of the Fenton process. Experimental results about the degradation of 2-CP show that UV irradiation improves the degradation efficiency of the Fenton process. The major intermediate formed during the degradation of 2-CP was p-benzoquinone.  相似文献   

18.
Fenton法是一种高级氧化技术,具有反应快、易操作、氧化速率较高等优点,主要应用于降解废水中有毒或难降解的有机物。近年来关于Fenton及类Fenton反应的研究日益增多。综述了近年来有关Fenton及类Fenton反应泡括Photo—Fenton和光/H2O2/草酸铁络合物体系)的研究进展。一方面,介绍了Fenton、Photo—Fenton和光/H2O2/草酸铁络合物体系的反应机理及影响氧化效果的主要因素;另一方面,由于Fenton反应能产生大量氧化能力强的羟基自由基,可以作为引发剂应用到聚合物合成中。对Fenton及类Fenton反应在聚合物合成领域的应用进行了总结。最后,对Fenton及类Fenton反应在聚合物合成领域的应用前景进行了展望。  相似文献   

19.
混凝—光催化氧化法处理合成胶废水的研究   总被引:1,自引:0,他引:1  
以硫酸亚铁和过氧化氢作为催化剂,采用混凝—光催化氧化法,通过混凝、Fenton试剂和紫外光照射处理合成胶废水.考察了混凝剂种类及加量、FeSO4·7H2O加量、处理时间、pH值、H2 O2加量及投加方式对合成胶废水COD去除率的影响,确定最佳处理条件如下:以硫酸铁为混凝剂、其加量2500 mg·L-1,FeSO4·7H...  相似文献   

20.
Kinetics of phenol mineralization by Fenton-like oxidation   总被引:1,自引:0,他引:1  
Altai Bach 《Desalination》2010,264(3):188-192
The kinetics of hydrogen peroxide decomposition and the mineralization rate of phenol in homogeneous aqueous solution (pH < 3) via Fenton-like reaction were studied. Results were correlated with the generation of hydroxyl radicals as well as with iron speciation. Batch experiments were carried out in de-ionized water in a completely mixed batch reactor under a wide range of experimental conditions (3500 ≤ [H2O2] ≤ 8250 mg/L; 100 mg/L ≤ [Fe] ≤ 2350 mg/L; 2.5 ≤ [H2O2]/[Fe] ≤ 83; 0 mg/L ≤ [TOC] ≤ 1000 mg/L). Results demonstrated that the rate of hydrogen peroxide decomposition, phenol mineralization and ferrous ions formation depended on both the initial concentration of the phenol and on the weight ratio between hydrogen peroxide and iron. A linear correlation was found between the mineralization rate of phenol and the decomposition rate of hydrogen peroxide indicated that 10 g of hydrogen peroxide was required to mineralize 1 g of phenol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号