首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 484 毫秒
1.
目的 深度图像作为一种普遍的3维场景信息表达方式在立体视觉领域有着广泛的应用。Kinect深度相机能够实时获取场景的深度图像,但由于内部硬件的限制和外界因素的干扰,获取的深度图像存在分辨率低、边缘不准确的问题,无法满足实际应用的需要。为此提出了一种基于彩色图像边缘引导的Kinect深度图像超分辨率重建算法。方法 首先对深度图像进行初始化上采样,并提取初始化深度图像的边缘;进一步利用高分辨率彩色图像和深度图像的相似性,采用基于结构化学习的边缘检测方法提取深度图的正确边缘;最后找出初始化深度图的错误边缘和深度图正确边缘之间的不可靠区域,采用边缘对齐的策略对不可靠区域进行插值填充。结果 在NYU2数据集上进行实验,与8种最新的深度图像超分辨率重建算法作比较,用重建之后的深度图像和3维重建的点云效果进行验证。实验结果表明本文算法在提高深度图像的分辨率的同时,能有效修正上采样后深度图像的边缘,使深度边缘与纹理边缘对齐,也能抑制上采样算法带来的边缘模糊现象;3维点云效果显示,本文算法能准确区分场景中的前景和背景,应用于3维重建等应用能取得较其他算法更好的效果。结论 本文算法普遍适用于Kinect深度图像的超分辨率重建问题,该算法结合同场景彩色图像与深度图像的相似性,利用纹理边缘引导深度图像的超分辨率重建,可以得到较好的重建结果。  相似文献   

2.
针对光场相机结构和像素传感器分辨率的限制导致光场图像空间分辨率和角度分辨率都较低的问题,提出一种融合全局与局部视角的光场超分辨率重建算法,同时提高光场图像的空间分辨率和角度分辨率。首先根据待重建新视角的位置,自适应选择局部视角,利用空间超分辨率卷积神经网络提高全局视角和局部视角的空间分辨率,然后提取并融合全局视角和局部视角在新视角处映射图像的深度特征和颜色特征,通过角度分辨率卷积神经网络重建获得新视角图像。实验结果表明,与现有方法相比,峰值信噪比(PSNR)提高约3 dB,结构相似性指数(SSIM)提高约0.02,有效地解决了遮挡情况下重建新视角局部目标丢失现象,同时更好地保持新视角的边缘信息,获得更优的重建效果。  相似文献   

3.
目的 针对基于学习的图像超分辨率重建算法中存在边缘信息丢失、易产生视觉伪影等问题,提出一种基于边缘增强的深层网络模型用于图像的超分辨率重建。方法 本文算法首先利用预处理网络提取输入低分辨率图像的低级特征,然后将其分别输入到两路网络,其中一路网络通过卷积层级联的卷积网络得到高级特征,另一路网络通过卷积网络和与卷积网络成镜像结构的反卷积网络的级联实现图像边缘的重建。最后,利用支路连接将两路网络的结果进行融合,并将其结果通过一个卷积层从而得到最终重建的具有边缘增强效果的高分辨率图像。结果 以峰值信噪比(PSNR)和结构相似度(SSIM)作为评价指标来评价算法性能,在Set5、Set14和B100等常用测试集上放大3倍情况下进行实验,并且PSNR/SSIM指标分别取得了33.24 dB/0.9156、30.60 dB/0.852 1和28.45 dB/0.787 3的结果,相比其他方法有很大提升。结论 定量与定性的实验结果表明,基于边缘增强的深层网络的图像超分辨重建算法所重建的高分辨率图像不仅在重建图像边缘信息方面有较好的改善,同时也在客观评价和主观视觉上都有很大提高。  相似文献   

4.
利用双通道卷积神经网络的图像超分辨率算法   总被引:2,自引:2,他引:0       下载免费PDF全文
目的 图像超分辨率算法在实际应用中有着较为广泛的需求和研究。然而传统基于样本的超分辨率算法均使用简单的图像梯度特征表征低分辨率图像块,这些特征难以有效地区分不同的低分辨率图像块。针对此问题,在传统基于样本超分辨率算法的基础上,提出双通道卷积神经网络学习低分辨率与高分辨率图像块相似度进行图像超分辨率的算法。方法 首先利用深度卷积神经网络学习得到有效的低分辨率与高分辨率图像块之间相似性度量,然后根据输入低分辨率图像块与高分辨率图像块字典基元的相似度重构出对应的高分辨率图像块。结果 本文算法在Set5和Set14数据集上放大3倍情况下分别取得了平均峰值信噪比(PSNR)为32.53 dB与29.17 dB的效果。结论 本文算法从低分辨率与高分辨率图像块相似度学习角度解决图像超分辨率问题,可以更好地保持结果图像中的边缘信息,减弱结果中的振铃现象。本文算法可以很好地适用于自然场景图像的超分辨率增强任务。  相似文献   

5.
目的 针对基于图像3维重建中纹理映射存在缝隙的问题,提出一种多参数加权的无缝纹理映射算法。方法 算法根据图像的标定信息对三角格网进行聚类分割,将重建模型聚类成不同参考图像的网格贴片,并对贴片排序生成纹理图像,加权融合重建顶点的法线角度、图像视点、模型深度等信息生成纹理贴片像素,最后采用多分辨率分解融合技术消除纹理贴片缝隙,实现无缝的纹理映射。结果 对不同的测试数据进行了验证,本文算法在保持一定清晰度的前提下消除了纹理的缝隙,即使对于构网误差较大的区域也能得到较为满意的结果,同时本文算法支持大数据的3维纹理映射。结论 提出了一种无缝的纹理映射算法,算法通过构造一个平滑的加权方程融合多源信息消除纹理的接缝,实验结果表明了本文算法的有效性及实用性,得到了高保真的无缝纹理映射效果,可应用到城市级别的大场景3维重建领域。  相似文献   

6.
结合深度学习的单幅遥感图像超分辨率重建   总被引:1,自引:0,他引:1       下载免费PDF全文
目的 克服传统遥感图像超分辨率重建方法依赖同一场景多时相图像序列且需预先配准等缺点,解决学习法中训练效率低和过拟合问题,同时削弱插值操作后的块效应,增强单幅遥感图像超分辨率重建效果。方法 首先构造基于四层卷积的深度神经网络结构,并在结构中前三层卷积后添加参数修正线性单元层和局部响应归一化层进行优化,经过训练得到遥感图像超分辨率重建模型,其次,对多波段遥感图像的亮度空间进行双三次插值,然后使用该模型对插值结果进行重建,并在亮度空间重建结果指导下,使用联合双边滤波来提升其色度空间边缘细节。结果 应用该方法对实验遥感图像进行2倍、3倍、4倍重建时在无参考指标上均优于对比方法,平均清晰度提升约2.5个单位,同时取得了较好的全参考评价结果,在2倍重建时峰值信噪比较传统插值法提升了约2 dB,且平均训练效率较其他学习法提升3倍以上,所得遥感图像重建结果在目视效果上更加细致、自然。结论 实验结果表明,本文设计的网络抗过拟合能力强、训练效率高,重建时针对单幅遥感图像,无需依赖图像序列且不受波段影响,重建结果细节表现较好,具有较强的普适性。  相似文献   

7.
目的 无人机摄像资料的分辨率直接影响目标识别与信息获取,所以摄像分辨率的提高具有重大意义。为了改善无人机侦察视频质量,针对目前无人机摄像、照相数据的特点,提出一种无人机侦察视频超分辨率重建方法。方法 首先提出基于AGAST-Difference与Fast Retina Keypoint (FREAK)的特征匹配算法对视频目标帧与相邻帧之间配准,然后提出匹配区域搜索方法找到目标帧与航片的对应关系,利用航片对视频帧进行高频补偿,最后采用凸集投影方法对补偿后视频帧进行迭代优化。结果 基于AGAST-Difference与FREAK的特征匹配算法在尺度、旋转、视点等变化及运行速度上存在很大优势,匹配区域搜索方法使无人机视频的高频补偿连续性更好,凸集投影迭代优化提高了重建的边缘保持能力,与一种简单有效的视频序列超分辨率复原算法相比,本文算法重建质量提高约4 dB,运行速度提高约5倍。结论 提出了一种针对无人机的视频超分辨率重建方法,分析了无人机视频超分辨率问题的核心所在,并且提出基于AGAST-Difference与FREAK的特征匹配算法与匹配区域搜索方法来解决图像配准与高频补偿问题。实验结果表明,本文算法强化了重建图像的一致性与保真度,特别是对图像边缘细节部分等效果极为明显,且处理速度更快。  相似文献   

8.
目的 为了增强图像超分辨率重建的准确性,克服传统插值所产生的边缘模糊与边缘锯齿等负面效果,提出一种基于多方向模板变分模型的单幅图像超分辨率重建方法。方法 首先构建体现28个方向的多方向模板对输入图像的轮廓方向进行计算,同时通过将TV模型引入到图像轮廓的估计中来确定边缘轮廓的最优方向;在此基础上通过进行基于所提出的多方向模板的图像插值来实现图像的超分辨率重建。结果 对比基于活动轮廓的图像边缘插值方法重建的经典高分辨率测试图像,本文方法在平均峰值信噪比和平均结构相似度方面分别提高了1.578 dB和 0.030 02 dB。结论 本文方法可以有效地克服传统插值方法所产生的边缘模糊和边缘锯齿化等负面效果,也避免了较少方向模板所带来的边缘和纹理丰富区域的纹理失真现象,可以取得较好的重建效果。  相似文献   

9.
目的 针对深度图像分辨率非常低的问题,结合同场景高分辨率彩色图像,提出一种基于彩色图约束的二阶广义总变分深度图超分辨率重建方法。方法 首先将低分辨率深度图映射到高分辨率彩色空间;然后利用二阶广义总变分模型,将带有边缘指示函数的高分辨率彩色约束项作为正则项,使得深度图像超分辨率重建问题变成最优求解问题;最后通过迭代重加权和原—对偶方法进行求解。结果 实验结果表明,本文方法可以有效地保护图像的边缘结构,在定性和定量两个方面都可达到很好的效果。结论 本文方法可以有效地解决深度图分辨率非常低的问题。  相似文献   

10.
目的 人脸超分辨率重建是特定应用领域的超分辨率问题,为了充分利用面部先验知识,提出一种基于多任务联合学习的深度人脸超分辨率重建算法。方法 首先使用残差学习和对称式跨层连接网络提取低分辨率人脸的多层次特征,根据不同任务的学习难易程度设置损失权重和损失阈值,对网络进行多属性联合学习训练。然后使用感知损失函数衡量HR(high-resolution)图像与SR(super-resolution)图像在语义层面的差距,并论证感知损失在提高人脸语义信息重建效果方面的有效性。最后对人脸属性数据集进行增强,在此基础上进行联合多任务学习,以获得视觉感知效果更加真实的超分辨率结果。结果 使用峰值信噪比(PSNR)和结构相似度(SSIM)两个客观评价标准对实验结果进行评价,并与其他主流方法进行对比。实验结果显示,在人脸属性数据集(CelebA)上,在放大8倍时,与通用超分辨率MemNet(persistent memory network)算法和人脸超分辨率FSRNet(end-to-end learning face super-resolution network)算法相比,本文算法的PSNR分别提升约2.15 dB和1.2 dB。结论 实验数据与效果图表明本文算法可以更好地利用人脸先验知识,产生在视觉感知上更加真实和清晰的人脸边缘和纹理细节。  相似文献   

11.
目的 针对低质量浅浮雕表面的噪声现象,提出一种二次联合局部自适应稀疏表示和非局部低秩矩阵近似的浅浮雕优化算法。方法 本文方法分两个阶段。第1阶段,将浅浮雕灰度图划分成大小相同的数据块,提取边界块并进行去噪,分别对数据块进行稀疏表示和低秩近似处理。一方面,通过字典学习获得过完备字典和稀疏编码;另一方面,利用K均值聚类算法(K-means)将事先构建的外部字典库划分成k类,从k个簇中心匹配每个数据块的相似块并组成相似矩阵,依次进行低秩近似和特征增强处理。最后通过最小二乘法求解,重建并聚合新建数据块以得到新的高度场。第2阶段与第1阶段的结构相似,主要区别在于改用重建高度场的非局部自身相似性来实现块匹配。结果 在不同图像压缩率下(70%,50%,30%),对比本文方法与BM3D(block-matching and 3D filtering)、WNNM(weighted nuclear norm minimization)、STROLLR(sparsifying transform learning and low-rank)、TWSC(trilateral weighted sparse coding)4个平滑降噪方法的浅浮雕重建结果,发现BM3D和STROLLR方法的特征保持虽好,但平滑效果较差,WNNM方法出现模型破损现象,TWSC方法的平滑效果比BM3D和STROLLR方法更好,但特征也同时被光顺化。阴影恢复形状法(shape from shading,SFS)是一种基于图像的3D建模法,但是其重建结果比较粗糙。相比之下,本文方法生成的浅浮雕模型更加清晰直观,在浅浮雕的特征增强和平滑去噪方面都展现出更好的性能。结论 本文综合数据块的局部稀疏性和数据块之间的非局部相似性对粗糙的浅浮雕模型进行二次高度场重建。本文方法有效改善了现有浅浮雕模型的质量,提高了模型的整体视觉效果,为浅浮雕的优化提供了新方法。  相似文献   

12.
小波变换与纹理合成相结合的图像修复   总被引:1,自引:0,他引:1       下载免费PDF全文
目的 为了克服传统的图像修复算法在结构和纹理边界的错误修复,利用小波变换域的系数特征,探讨了一种基于小波变换与纹理合成相结合的修复算法。方法 算法先利用小波变换将待修复图像分解成具有不同分辨率的低频子图和高频子图,然后根据不同子图各自的特征分别进行修复。对代表图像结构信息的低频子图,采用FMM(fast marching method)算法进行修复;对代表图像纹理信息的高频子图,根据各子图中小波系数的特征,利用纹理合成方法进行修复。结果 分层、分类修复方法对边缘破损具有良好的修复效果,其峰值信噪比相比于传统算法提高了1~2 dB。结论 与相关算法相比,本文算法的综合修复能力较好,可以有效修复具有较强边缘和丰富纹理的破损图像,尤其对破损自然图像的修复,修复后图像质量得到较大提升,修复效果更符合人眼视觉效应。  相似文献   

13.
The intensity and direction of the light field (LF) can be recorded simultaneously by using LF cameras. However, since LF cameras sacrifice spatial resolution for higher angular resolution, the images acquired by LF cameras tend to have low spatial resolution. Therefore, LF image super-resolution (SR) has become an integral part of LF studies. Many existing LF image SR methods fail to fully utilize angular and spatial information due to only using partial sub-aperture images (SAIs). In this paper, we propose a progressive spatial-angular feature enhancement network (PSAFENet) to deal with the problem of missing information in LF image SR. Specifically, we first extract the spatial features of SAIs, the spatial and angular features contained in the macro-pixel images (MacPIs) by three different feature extraction modules. Then, these features are fed into a spatial-angular feature enhancement (SAFE) module to perform enhancement of spatial-angular information on the SAIs. To improve the reconstruction accuracy, we also use the information multi-distillation block (IMDB) to remove the redundant information before upsampling. Our network can well merge the angular and spatial information into each SAI, which facilitates the reconstruction of the LF images. Experimental results on five public datasets show that the proposed PSAFENet method outperforms existing methods in both qualitative and quantitative comparisons.  相似文献   

14.
目的 提出一种亮度、对比度、饱和度三要素与神经网络相结合的家装设计渲染图增强方法。方法 该方法分析了图像增强的3个要素:亮度、对比度和饱和度。算法从下列几个方面着手进行三要素的调节:1)根据原图饱和度和图像融合方法实现亮度和对比度增强;2)采用颜色矩阵实现饱和度增强;3)采用直方图均衡实现对比度进一步增强。这3个要素对图像增强的效果均有贡献,本文为三要素分别赋予一个权值,并引入神经网络方法,自动建立图像亮度分量均值、方差和饱和度分量均值、方差与三要素的权值系数的非线性映射关系。结果 根据图像本身的信息自动获取图像增强三要素的增强系数,实现家装设计渲染图的自适应增强。算法的有效性在不同程度偏灰暗的家装设计渲染图上得到了验证,并与几种经典方法进行了直方图、信息熵、平均对比度(AC)和平均灰度(AG)的定量比较。实验结果显示,本文算法实验结果的直方图具有很少的信息丢失和较好的特征保持,与遗传算法相比,信息熵提高了约0.2,AC值提高了约0.1,AG值提高了约15,本文算法在多数情况下评价指标优于改进的直方图方法。结论 通过对实验结果的直观评价与定量评价,证明与某些现有的方法相比,本文方法适用于不同程度偏灰暗的渲染图,具有较好的通用性,并能达到更优的渲染图像增强效果。  相似文献   

15.
目的 深度信息的获取是3维重建、虚拟现实等应用的关键技术,基于单目视觉的深度信息获取是非接触式3维测量技术中成本最低、也是技术难度最大的手段。传统的单目方法多基于线性透视、纹理梯度、运动视差、聚焦散焦等深度线索来对深度信息进行求取,计算量大,对相机精度要求高,应用场景受限,本文基于固定光强的点光源在场景中的移动所带来的物体表面亮度的变化,提出一种简单快捷的单目深度提取方法。方法 首先根据体表面反射模型,得到光源照射下的物体表面的辐亮度,然后结合光度立体学推导物体表面辐亮度与摄像机图像亮度之间的关系,在得到此关系式后,设计实验,依据点光源移动所带来的图像亮度的变化对深度信息进行求解。结果 该算法在简单场景和一些日常场景下均取得了较好的恢复效果,深度估计值与实际深度值之间的误差小于10%。结论 本文方法通过光源移动带来的图像亮度变化估计深度信息,避免了复杂的相机标定过程,计算复杂度小,是一种全新的场景深度信息获取方法。  相似文献   

16.
目的 传统的基于子视点叠加的重聚焦算法混叠现象严重,基于光场图像重构的重聚焦方法计算量太大,性能提升困难。为此,本文借助深度神经网络设计和实现了一种基于条件生成对抗网络的新颖高效的端到端光场图像重聚焦算法。方法 首先以光场图像为输入计算视差图,并从视差图中计算出所需的弥散圆(circle of confusion,COC)图像,然后根据COC图像对光场中心子视点图像进行散焦渲染,最终生成对焦平面和景深与COC图像相对应的重聚焦图像。结果 所提算法在提出的仿真数据集和真实数据集上与相关算法进行评价比较,证明了所提算法能够生成高质量的重聚焦图像。使用峰值信噪比(peak signal to noise ratio,PSNR)和结构相似性(structural similarity,SSIM)进行定量分析的结果显示,本文算法比传统重聚焦算法平均PSNR提升了1.82 dB,平均SSIM提升了0.02,比同样使用COC图像并借助各向异性滤波的算法平均PSNR提升了7.92 dB,平均SSIM提升了0.08。结论 本文算法能够依据图像重聚焦和景深控制要求,生成输入光场图像的视差图,进而生成对应的COC图像。所提条件生成对抗神经网络模型能够依据得到的不同COC图像对输入的中心子视点进行散焦渲染,得到与之对应的重聚焦图像,与之前的算法相比,本文算法解决了混叠问题,优化了散焦效果,并显著降低了计算成本。  相似文献   

17.
目的 近景摄影测量中的目标几何形状复杂,且拍摄影像的角度变化大,给影像与几何模型的配准带来了困难。传统单幅影像与几何模型配准的做法,由于缺乏自动粗配准的方法,效率相对较低。将多视影像首先统一坐标系的做法,在近景目标的复杂背景下也难以实现。方法 为此,将近景目标置于平面标定板上,利用相机标定的方法同时解算出影像的内外方位元素,实现多视影像坐标系的统一。然后人工选取3组以上同名点,做多视影像与几何模型的绝对定向,得到初始配准参数。最后使用多视影像与几何模型漫反射渲染图之间的归一化互信息作为相似性测度,用Powell非线性优化方法得到配准参数的精确值。结果 实验结果表明,使用标定板可以稳定地获取多视影像的内外方位元素,用绝对定向得到的配准参数进行影像和几何模型的交替显示仍然可以看到明显的裂缝,在经过互信息优化后裂缝现象得到明显改善。结论 多视影像与几何模型配准相比传统单幅影像与几何模型配准,人工选取同名点的工作量大大减少,由于人工选点存在误差,影响绝对定向的精度,使用归一化互信息作为测度进行非线性优化,可以获得更高的精度。  相似文献   

18.
目的 光场相机可以通过单次曝光同时从多个视角采样单个场景,在深度估计领域具有独特优势。消除遮挡的影响是光场深度估计的难点之一。现有方法基于2D场景模型检测各视角遮挡状态,但是遮挡取决于所采样场景的3D立体模型,仅利用2D模型无法精确检测,不精确的遮挡检测结果将降低后续深度估计精度。针对这一问题,提出了3D遮挡模型引导的光场图像深度获取方法。方法 向2D模型中的不同物体之间添加前后景关系和深度差信息,得到场景的立体模型,之后在立体模型中根据光线的传输路径推断所有视角的遮挡情况并记录在遮挡图(occlusion map)中。在遮挡图引导下,在遮挡和非遮挡区域分别使用不同成本量进行深度估计。在遮挡区域,通过遮挡图屏蔽被遮挡视角,基于剩余视角的成像一致性计算深度;在非遮挡区域,根据该区域深度连续特性设计了新型离焦网格匹配成本量,相比传统成本量,该成本量能够感知更广范围的色彩纹理,以此估计更平滑的深度图。为了进一步提升深度估计的精度,根据遮挡检测和深度估计的依赖关系设计了基于最大期望(exception maximization,EM)算法的联合优化框架,在该框架下,遮挡图和深度图通过互相引导的方式相继提升彼此精度。结果 实验结果表明,本文方法在大部分实验场景中,对于单遮挡、多遮挡和低对比度遮挡在遮挡检测和深度估计方面均能达到最优结果。均方误差(mean square error,MSE)对比次优结果平均降低约19.75%。结论 针对遮挡场景的深度估计,通过理论分析和实验验证,表明3D遮挡模型相比传统2D遮挡模型在遮挡检测方面具有一定优越性,本文方法更适用于复杂遮挡场景的深度估计。  相似文献   

19.

A novel three-step method to reduce speckle in Synthetic Aperture Radar (SAR) images is presented. First, an edge detector is used to detect the edge orientations in SAR images. Second, using a data processing method named empirical mode decomposition, the SAR image is smoothed along four directions: horizontal, vertical, left diagonal and right diagonal, respectively. Third, the SAR image is reconstructed such that if the edge direction is horizontal, the pixel smoothed along the horizontal direction is used to reconstruct the image, and so on; if an edge is not detected, the mean of the four directionally smoothed images is used to reconstruct the image. Application of this method to SAR images has shown that it is well balanced in the quality of visual appearance, mean preservation, edge preservation, and reduction of the standard deviation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号