首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
应用XRD、EDS 等手段,研究了MgO 对12CaO·7AI2O3(C12A7)晶体结构及其氧化铝浸出性能的影响.结果表明:在掺杂量小于2%的情况下,MgO 会固溶入C12A7晶体中,但不会影响该体系的物相组成.Mgo在C12A7 晶体中的饱和固溶量不超过1%,其余的 MgO 以方镁石形式单独析出.固溶机理为离子半径相对较大的Mg2 取代了晶胞中离子半径相对较小的AI3 ,引起了晶胞的扩胀,晶面距d值的变大.当MgO 含量小于2%时,随着Mgo掺杂量的增大,C12A7 的氧化铝浸出率出现了小幅度的下降,但均在90%以上,对浸出性能影响不大.  相似文献   

2.
中低品位高铁铝土矿的高效经济利用是氧化铝企业亟待解决的难题.本文以中低品位高铁一水硬铝石为原料,模拟氧化铝生产企业压煮器溶出系统和管道化溶出系统工艺条件,进行了拜耳法溶出和赤泥沉降分离实验,考察了中低品位高铁铝土矿在不同工艺条件下的溶出性能.结果 表明,在压煮器系统溶出工艺条件下(原矿浆固含355 g/L,石灰添加量9%,溶出温度250℃,溶出时间45 min),氧化铝的实际溶出率在60%以下,相对溶出率在65%左右,溶出液αk为1.40~ 1.42;在管道化系统溶出工艺条件下(原矿浆固含255 g/L,石灰添加量12%,溶出温度270C,溶出时间45 min),氧化铝的实际溶出率为80%左右,相对溶出率在90%左右,溶出液αk为1.34~ 1.36.采用生产现场高氧化铝浓度、高固含(Al2O3175 g/L,固含100~ 150 g/L)的生产条件,两种工艺条件下溶出赤泥的沉降分离都很困难,对现场常用絮凝剂进行筛选,仅CiBa HP-20尚可使用,压煮器溶出赤泥沉降速度平均约为10 mm/min,管道化溶出赤泥沉降速度平均约为8mm/min.  相似文献   

3.
曾小君  汪洋 《非金属矿》2012,35(5):31-33
以高岭土尾矿为原料提取氧化铝,研究水热辅助2段酸溶工艺提取氧化铝的条件,考察了高岭土尾矿煅烧活化和溶出条件对高岭土尾矿中氧化铝溶出率的影响.实验结果表明,煅烧活化条件为:煅烧温度650℃、煅烧时间2h;溶出的最佳工艺条件为:第1阶段采用浓盐酸酸溶提取氧化铝,液固质量比4∶1、水热反应温度85℃、水热反应时间12h;第2阶段采用质量分数15%的盐酸酸溶提取氧化铝,液固质量比4∶1、水热反应温度85℃、水热反应时间12h.在此条件下,高岭土尾矿中氧化铝总溶出率达到75.5%.  相似文献   

4.
利用共沉淀法合成了Ni^2+掺杂量x=0.00,0.005,0.01和0.03的Li1-2xNixFePO4通过对合成材料的XRD、元素组成及其电化学性能研究表明,少量Ni^2+的掺杂并未影响材料晶体结构,但对材料的电化学性能却有着非常积极的影响:0.1C放电时,掺杂量x=0.01样品的首次放电比容量可达143.2mA-h/g,20次循环后放电比容量为131.2mA·h/g,容量衰减仅为8.4%。分别从荷锂状态(Li1-2xNixFePO4)和缺锂状态(FePO4)两方面对Ni^2+掺杂改性的原理进行了简单的探讨:材料处于荷锂状态时,Ni^2+掺入形成的锂空位与镍取代有利于提高锂离子于晶体中的扩散速率以及材料的电子导电能力;材料处于缺锂状态时,Ni^2+掺入使得材料形成了Fe^2+/Fe^2+共存的状态,从而提高了其电子导电能力。  相似文献   

5.
通过高温固相法制备不同Yb~(3+)和Eu~(3+)掺杂浓度的C12A7∶Yb~(3+)/Eu~(3+)多晶粉.利用X射线衍射、上转换荧光光谱和CIE色谱图研究了C12A7∶Yb~(3+)/Eu~(3+)多晶粉的晶体结构和荧光性能,结果表明:在波长980 nm激光激发下,C12A7∶Yb~(3+)/Eu~(3+)多晶粉分别于550 nm和663 nm处发射出上转换绿光和红光,它们分别来源于Eu~(3+)离子的~5D_0→~7F_0和~5D_0→~7F_3跃迁.结合上转换布局机制,分析了不同Yb~(3+)和Eu~(3+)掺杂浓度对C12A7∶Yb~(3+)/Eu~(3+)多晶粉光学性能的影响.分析CIE色度光谱,通过改变Yb~(3+)和Eu~(3+)离子掺杂浓度可以使C12A7∶Yb~(3+)/Eu~(3+)多晶粉的发光在黄绿光区域到绿色区域间调节.  相似文献   

6.
硫酸浸出法提取铝土矿中氧化铝的研究   总被引:2,自引:0,他引:2  
对硫酸浸取铝土矿中氧化铝进行了研究,并考察了硫酸浓度、酸浸温度、酸浸时间、液固比、原料粒度对氧化铝浸出率的影响。结果表明,当硫酸浓度90%、温度220℃、时间1h、液固比5∶1、粒度小于141μm时,氧化铝的浸出率可达85%以上。  相似文献   

7.
为消除贵州某高硫铝土精矿中硫含量过高对拜耳法生产的不利影响,研究了该高硫铝土矿精矿拜耳法溶出过程中氧化铝和硫的可溶性。试验结果显示:最优溶出试验条件为溶出温度260℃、溶出时间60 min、石灰加入量7%、配料分子比1.45、Na_2O浓度230 g/L,在此试验条件下,赤泥中氧化铝含量为17.13%,硫含量为0.12%,氧化铝的相对溶出率达到97.24%,硫的溶出率为17.72%,说明该试样溶出性能良好。  相似文献   

8.
研究γ-2CaO·SiO2的分解性能对于判断铝酸钙炉渣溶出过程中是否有二次反应发生和氧化铝损失具有重要意义。研究了不同的合成温度和保温时间对合成产物物相的影响,结果发现:合成温度1500℃保温时间60min以上时可获得纯γ-2CaO·SiO2且其分解性能不再随着保温时间的增加而改变。采用二次回归正交试验法对1500℃保温60min合成的γ-2CaO·SiO2进行了分解性能的研究,详细考察了其受苛碱和碳钠浓度、氧化铝浓度、分解温度以及分解时间的影响规律,得到的回归方程在0.01水平上高度显著,且方程回归值与试验值的相对误差不超过3%。由该回归方程计算可知,γ-2CaO·SiO2在溶出过程中有少量的分解,但是不会引起氧化铝的损失。  相似文献   

9.
李雨  徐欣欣  徐林  魏涛  雷鹰 《矿冶工程》2015,35(4):67-69
采用微波辅助加热, 研究了硫酸从废弃荧光粉中浸出稀土元素的工艺, 考察了硫酸浓度、液固比、浸出温度及浸出时间对浸出稀土的影响。实验结果表明;采用微波辅助硫酸浸出废荧光粉, 稀土元素的回收率分别为;Y2O3 90%~98%, Eu2O3 80%~90%, CeO2 26.16%, Tb4O7 22.5%。CeO2、Tb4O7、Al2O3和MgO浸出率较低, 变化规律一致。液固比和浸出时间对Y2O3和Eu2O3浸出率的影响较大, 硫酸浓度和浸出时间对CeO2和Tb4O7浸出率的影响较大, 浸出温度对各组分的浸出率影响不显著。  相似文献   

10.
对比了酸法、碱法处理某砂岩铀矿石的浸出性能.结果表明,5 g/L H2SO4或10 g/L NH4HCO3作为溶浸剂,铀的浸出率分别达到87%和81%左右.若采用碱法浸出,其溶浸剂中应尽量避免钠离子或补充等量不与碳酸根形成沉淀的金属阳离子,以避免钠离子引起的矿层渗透系数的降低.采用低质量浓度硫酸浸出,浸出过程相对平稳,浸出液固体积质量比小,浸出液铀质量浓度高,若采用酸法浸出,可添加适量有机磷通过螯合增溶和晶格畸变的作用抑制硫酸钙形成致密、规则结晶体,防止化学堵塞.  相似文献   

11.
杂卤石矿石可浸性试验研究   总被引:1,自引:0,他引:1  
以渠县杂卤石矿为原料, 选取CaCl2 溶液作为溶浸剂, 对矿石进行了室内搅拌浸出试验和柱浸试验。研究了矿石粒度、体系温度、溶浸剂浓度、液固比、搅拌等条件对溶浸过程的影响。为了评价矿石的可浸性, 采用柱浸试验探讨了矿石粒度、溶浸剂浓度、渗滤速度、渗滤路径等条件对过程的影响。试验结果表明, 在一定条件下杂卤石矿的浸出性能较好, K+ 浸出率最大可达93.88%。当K+浸出率达80%时, 消耗溶浸剂的量与矿石量的比值约为10∶1;且浸出液中K+最高浓度可达13.5 g/L, 这说明矿石在常温盐浸条件下易被浸出。利用溶浸技术对杂卤石矿开采具有一定的应用前景。  相似文献   

12.
碱性加压浸出三次氨浸渣中钼的实验研究   总被引:2,自引:0,他引:2  
采用加压碱浸的方法浸出钼焙砂三次氨浸渣中的钼, 研究了浸出剂、温度、时间、催化剂等对钼浸出率的影响, 得出钼浸出最优条件为:Na2CO3加入量为30%, 液固比为3, 催化剂A加入量为6%, 温度为180 ℃, 浸出时间为1 h, 此条件下钼浸出率可达98%; 进行了4次连续循环浸出试验, 钼浸出率均在98%以上。  相似文献   

13.
为了提高鸡西矿区煤矸石中氧化铝的浸出效果,在对煤矸石活化处理的基础上,采用硫酸溶液对其进行酸浸处理,探索不同因素对煤矸石中氧化铝浸出效果的影响规律,并确定氧化铝的最佳浸出条件。试验结果表明:硫酸浓度、酸浸温度、酸浸时间、液固比均对氧化铝的浸出效果有影响,在液固比为2∶1、硫酸浓度为80%、酸浸温度为120℃、酸浸时间为2.50 h的条件下,氧化铝的浸出效果最好,浸取率为37.11%。  相似文献   

14.
铝土矿浮选尾矿含铁量较高, 不能直接作为电热法生产一次铝硅合金的原料。采用盐酸对铝土矿浮选尾矿进行了除铁。考察了浸出时间、浸出温度、浸出液固比及盐酸浓度对尾矿氧化铁和氧化铝浸出率的影响。实验结果表明, 在浸出温度80 ℃、浸出时间120 min、浸出液固比5∶1、盐酸浓度21%的条件下, 尾矿的除铁率可达95%以上, 氧化铝的损失率在4.3%以下。  相似文献   

15.
废铝基催化剂综合利用新工艺研究   总被引:5,自引:0,他引:5  
在X-射线衍射物相分析及探索性试验研究的基础上,开发了一种新的工艺,对废铝基催化剂中的有价元素进行综合回收。该工艺采用先提取铝后回收镍钴钒钼的技术,用钠化焙烧强化氧化铝的提取,促进了镍钴钒钼与铝的分离,为后续有价元素的综合回收创造了条件。试验结果表明,焙烧后废铝基催化剂中氧化铝的溶出率可达97%;采用碳分法从溶出氧化铝后的铝酸钠母液中制备氧化铝,产品可达国家一级标准,回收率为90%;溶出铝后的镍钴渣在适宜条件下进行浸出,镍、钴的浸出率可达98.2%和98.5%;强碱性阴离子树脂202可从铝酸钠溶液中选择性吸附钼,树脂的交换容量可达85mg/mL湿树脂,树脂的解吸率为80.8%。  相似文献   

16.
《矿冶》2013,(4)
研究了用H2SO4浸出催化剂提钼渣中钴和铝工艺参数,H2SO4浓度、液固比、添加剂用量、反应温度、反应时间、搅拌速度、原料粒度等条件对提钼渣溶浸过程中钴和铝浸出率的影响。结果表明,加入添加剂对催化剂载体Al2O3的浸出率没有影响,但是可以显著提高钴的浸出率。确定最佳工艺条件为:H2SO4浓度12 mol/L,液固比10,浸出温度90℃,浸出时间180 min,搅拌速度800 r/min,原料粒径为0.0750.096 mm的条件下,钴的浸出率达92%,铝的浸出率也接近74%。  相似文献   

17.
湿法处理钠硅渣回收氧化铝工艺研究   总被引:1,自引:0,他引:1  
对钠硅渣脱碱后的水化石榴石通入CO2气体转型的反应进行了热力学分析, 研究了温度、时间、改性次数、Na2CO3浓度对转型效果的影响, 并且研究了转型后渣溶铝过程中, 苛性碱浓度、温度、液固比、反应时间对氧化铝溶出率的影响。结果表明: 钠硅渣脱碱后形成的水化石榴石能被CO2分解, 在分解过程中硅化合物易形成CaO·SiO2·H2O、6CaO·6SiO2·H2O。反应时间的延长, 适当的反应温度, 有利于提高水化石榴石的转化率, 同时改性处理也可以提高转化率。在溶铝过程中, 时间延长, 液固比提高, 碱浓度升高, 以及适宜的反应温度均可提高溶铝效率。试验最佳工艺条件为: 转型最佳工艺为时间2 h, 液固比5~10, 温度50 ℃, 改性一次; 溶铝最佳工艺为温度50 ℃, 液固比为10, 时间1 h, 碱浓度大于50 g/L, 最优条件下氧化铝溶出率达60%以上, 弃渣中铝硅比A/S小于0.6。  相似文献   

18.
采用二步固相反应在惰性气氛下合成了橄榄石型LiFe0.98M0.02PO4/C(M=Ni,Cr)复合正极材料.通过XRD,SEM及电化学测试等手段对材料的性能进行分析.研究结果表明:少量Ni2+,Cr3+的掺杂虽然未改变LiFePO4晶体结构,但改善了材料的颗粒形貌,降低了粒径(粒径约200nm),增强了LiFe0.98M0.02PO4/C材料的导电能力,比未掺杂的LiFePO4/C具有更好的电化学性能.在2.5~4.2V下充放电,LiFe0.98Cr0.02PO4/C材料0.2C的首次放电比容量为146.7mA·h·g-1,循环50次的容量保持率为98.1%,10C放电比容量达116.3mA·h·g-1.  相似文献   

19.
李泽宇 《矿冶》2013,22(4):72-76
用H2SO4浸出的方法提取催化剂提钼渣的钴和铝,研究了H2SO4浓度、液固比(质量比)、添加剂用量、反应温度、反应时间、搅拌速度、原料粒度等条件对提钼渣溶浸过程中钴和铝浸出率的影响。结果表明:加入添加剂对催化剂载体Al2O3的浸出率没有影响,但是可以显著提高钴的浸出率。试验得到的最佳工艺条件为:H2SO4浓度12mol/L,液固比10,浸出温度90℃,浸出时间180min,搅拌速度800r/min,原料粒度0.075-0.096mm的条件下,钴的浸出率达92%,铝的浸出率也接近74%。  相似文献   

20.
永平低品位原生硫化铜矿石细菌浸出条件研究   总被引:5,自引:5,他引:5  
张卫民  谷士飞  于荣 《金属矿山》2006,(2):41-44,66
为回收利用永平铜矿废矿石中的低品位原生硫化铜矿资源,通过摇瓶实验,研究了接种量、初始Fe^2+浓度、矿浆酸度、矿石粒度和矿浆浓度等条件对永平低品位原生硫化铜矿石细菌浸出的影响。研究结果表明:有利于铜浸出的条件是接种量20%,初始Fe^2+浓度0g/L,初始pH值1.2,浸出过程控制pH值小于1.50,矿石粒度5mm,矿浆浓度20%~25%;溶液中三价铁含量过高或产生铁的沉淀都会直接影响细菌的浸矿效果;尽管浸矿细菌能很好地适应浸矿环境,但铜的浸出速度偏慢、浸出率偏低,有待于采取强化浸出措施。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号