首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 500 毫秒
1.
研究并测定了DRDECMP TBP/煤油对Am3 、Gd3 、UO2 2 的萃取分配比。研究结果表明 ,分配比随DRDECMP浓度或水相中HNO3浓度的增大而增大 ,随水相中Gd3 浓度的增大或温度的升高而降低 ;当有机相中TBP浓度增大时 ,Am3 、Gd3 的分配比略有下降 ,UO2 2 的分配比略有升高 ;酸度低时 ,Am3 和Gd3 的分配比低 ,可实现低酸反萃取 ;而低酸下UO2 2 的分配比较高 ,采用H2 C2 O4 等配位剂可有效降低其分配比 ,实现配合反萃取。  相似文献   

2.
为了解双羟基脲(DHU)在Purex流程Pu纯化循环应用的可行性,通过单级反萃实验研究了两相接触时间、有机相钚浓度、水相酸度及DHU浓度、相比等因素对Pu(Ⅳ)单级反萃率的影响。实验结果表明,在15℃下、接触时间≥1min、水相酸度≤0.4mol/L、还原剂浓度≥0.4mol/L、相比≤4:1时,对含12g/LPu0.2mol/L硝酸的有机相进行还原反萃,其反萃率≥87%。同时,反萃率随有机相中Pu(Ⅳ)或水相中Pu(III)浓度的提高而降低。  相似文献   

3.
近年来,核燃料后处理的计算机模拟研究成为世界各国研究核燃料后处理工艺过程的重要手段。本工作以磷酸三丁酯为萃取剂、煤油为稀释剂的混合有机萃取剂,在HNO3介质中络合萃取Np(Ⅳ、Ⅵ)的体系中,利用BP人工神经网络将萃取平衡分配比和萃取操作条件如初始硝酸浓度、初始Np(Ⅳ、Ⅵ)浓度、初始U(Ⅵ)浓度及温度进行了关联。建立了该体系下磷酸三丁酯络合萃取Np(Ⅳ、Ⅵ)的人工神经网络模型,并用该模型计算且检验了不同萃取条件对平衡分配比的影响。结果表明:在25~60℃、水相c0(HNO3)为0.1~11mol/L、水相初始铀质量浓度为0~210g/L时,该人工神经网络模型可以对Np(Ⅳ、Ⅵ)萃取分配比进行预测,具有较高的计算精度。经过文献Np(Ⅳ、Ⅵ)萃取平衡分配比实验值检验,其检验平均相对误差在2%以内。  相似文献   

4.
通过分光光度法和液闪计数法研究了Np(Ⅴ)与U(Ⅵ)间的阳阳离子络合作用对Np(Ⅴ)在30%TBP-煤油有机相中的萃取分配行为的影响。结果表明:Np(Ⅴ)-U(Ⅵ)阳阳离子络合物可被萃入TBP有机相中,其萃取分配系数较Np(Ⅴ)提高了数倍。随着U浓度在0.12~0.60 mol/L范围内升高,Np(Ⅴ)-U(Ⅵ)阳阳离子络合物萃取分配系数不断增加,当U浓度达到0.72 mol/L时,由于有机相铀饱和度原因,Np(Ⅴ)-U(Ⅵ)阳阳离子络合物萃取分配系数下降。在室温下,水相酸度为3 mol/L、铀浓度为0.60 mol/L、相比(o/a)为2∶1、两相接触时间为1 min时,Np(Ⅴ)的总萃取分配系数约为0.1,萃入有机相中的Np约占Np总量的9%。提高酸度有利于Np(Ⅴ)-U(Ⅵ)阳阳离子络合物的萃取,接触时间在1~8min范围内对萃取无影响。  相似文献   

5.
所有实验与相同条件下的TBP进行比较。结果表明(2-乙基)己基亚砜(DEHSO)萃取Zr、Nb、Ru元素的分配系数与水相硝酸浓度的变化规律和TBP相似,但DEHSO的萃取能力普遍比TBP强。在低辐照条件下,辐照对萃取分配系数几乎无影响;高辐照剂量下,辐照对这些元素萃取分配系数的影响比较复杂。DEHSO的辐解稳定性明显比TBP好。  相似文献   

6.
本文介绍了在30%TBP(磷酸三丁酯)/煤油-HNO_3体系中DBP(磷酸二丁酯)与硝酸锆络合物的形成对脉冲喷嘴板萃取柱液泛负荷的影响。实验研究结果表明:当有机相中DBP的浓度小于(2.0±0.2)×10~(-3)M时,其络合物对液泛负荷影响不大;当DBP浓度大于(2.0±0.2)×10~(-3)M时,液泛负荷明显下降。文章指出,在萃取过程中产生亲有机相的胶状沉淀物zr(OH)(NO_3)(DBP)_2,是导致体系过分乳化、易于液泛、操作容量降低的主要原因。本研究对探讨Purex过程污物形成机理、确定1A柱操作负荷有较大的实际意义。  相似文献   

7.
波长色散X荧光法同时测定铀和锆   总被引:1,自引:0,他引:1  
在乏燃料后处理Purex流程中,锆浓度的准确测定对控制界面污物产生、保证工艺流程运行等具有重要意义。本工作研究建立了一套同时测定铀和锆浓度的波长色散X荧光法,用于分析工艺溶液中的有机相或水相,不用预分离,可同时测定铀锆两种元素的浓度。  相似文献   

8.
以N,N,N′,N′-四辛基-3-氧戊二酰胺(TODGA)为代表的酰胺荚醚类萃取剂可以有效萃取高放废液中的An(Ⅲ)和Ln(Ⅲ),为防止Zr4+、Pd2+等裂片元素萃入有机相,通常需要加入H2C2O4作为水相络合剂,目前,H2C2O4对TODGA萃取Ln(Ⅲ)的影响尚未报道。本工作研究了HNO3、H2C2O4浓度对TODGA或TODGA+TBP体系萃取Nd3+的影响,同时测定了有机相中的H2C2O4浓度,并用紫外-可见吸收光谱分析了有机相中的H2C2O4与有机相中Nd3+的配位情况。研究结果表明:HNO3浓度在1.0~3.0 mol/L的范围内,Nd3+的分配比D(Nd3+)随HNO3浓度的增加而增加;H2C2O4浓度在0.1~0.5 mol/L的范围内,D(Nd3+)随H2C2O4浓度的增加而增加。HNO3浓度在1.0~3.0 mol/L的范围内,萃入有机相中H2C2O4浓度随HNO3浓度的增加而减小,且存在于有机相中的H2C2O4并未与有机相Nd3+配位。  相似文献   

9.
针对水相和有机相中微量铀的分析,利用分光光度法,着重研究了用于有机相中微量铀分析的TBP/0K-二甲苯-TTA法和水相中微量铀分析的氯膦偶氮Ⅲ法。 实验中证实,用于有机相铀分析的TBP/OK-二甲苯-TTA法因存在较多问题而无法使用,而氯膦偶氮Ⅲ法则可简便、准确地分析水相中的微量铀。  相似文献   

10.
在Purex流程中,镎可以Np^4+、NpO2^+、NpO2^2+价态同时存在,但Np(Ⅳ)和Np(Ⅵ)能被TBP萃取,而Np(Ⅴ)则在TBP中的分配比很低。不能被TBP萃取,因此,控制镎的价态是分离提取镎的重要环节。可利用镎不同价态之间电位的差异,采用电化学方法控制镎的价态。  相似文献   

11.
为了进一步优化Purex流程,研究了甲醛肟(FO)的硝酸水溶液对30%TBP/煤油中Pu(Ⅳ)的还原反萃取行为,考察了FO浓度、两相接触时间、两相相比、反萃液硝酸浓度、NO3-浓度、有机相U浓度和温度对Pu(Ⅳ)的还原反萃的影响。结果表明:延长两相接触时间能显著提高Pu(Ⅳ)的反萃率,增加甲醛肟的浓度、降低反萃液酸度、降低NO3-浓度、增加有机相U浓度和升高温度也对Pu(Ⅳ)的反萃率有一定的提高。采用16级逆流反萃取实验(还原反萃段12级,补充萃取段4级),模拟Purex流程1B槽U/Pu分离工艺,在相比(1BF∶1BX∶1BS)为4∶1∶1的条件下,U和Pu 的回收率均大于99.99%;铀中去钚的分离因子SF(Pu/U)=1.0×104;钚中去铀的分离因子SF(U/Pu)=8.3×104。FO作为新型络合 还原反萃取剂,可有效实现铀钚分离。  相似文献   

12.
以N,N,N′,N′-四辛基-2-甲基-3-氧戊二酰胺(Me-TODGA)或N,N,N′,N′-四辛基-3-氧戊二酰胺(TODGA)为萃取剂、磷酸三丁酯(TBP)为相改良剂、煤油为稀释剂,对比研究了水相酸度、萃取剂浓度、锶浓度、温度对Me-TODGA-TBP体系和TODGA-TBP体系萃取Sr2+的影响,并采用斜率法确定了萃合物的组成。结果表明,2种酰胺荚醚萃取Sr2+的分配比(DSr)随HNO3浓度(c(HNO3)=0.1~2.7 mol/L)、萃取剂浓度(c(萃取剂)=0.05~0.3 mol/L)的增加而增大,随Sr2+浓度的升高略有下降,随温度的升高而下降。2种萃取剂的萃合物组成分别为Sr(NO3)2•3Me-TODGA和Sr(NO3)2•2TODGA。萃取反应的ΔH分别为-69.46 kJ/mol和-51.39 kJ/mol,ΔS分别为-190.5 J/(mol•K)和-128.4 J/(mol•K),ΔG分别为-12.68 kJ/mol和-13.12 kJ/mol。相比之下,Me-TODGA萃取Sr2+的分配比不到TODGA的1/5。  相似文献   

13.
在串级萃取理论的基础上,编写了洗锝工艺段计算机模拟程序,程序可考察HNO3、U、Pu和Tc体系的萃取行为。通过串级实验对该程序的可靠性进行了验证。结果表明,该程序的计算值与串级实验的实验结果吻合很好,两者间的相对偏差大部分小于10%。在此基础上,利用该程序对洗锝工艺段工艺参数进行了计算分析,结果表明:洗锝工艺段洗锝效果与该工艺段所使用的硝酸总量(摩尔浓度乘以体积流量)有关,提高硝酸总使用量有利于提高锝的净化系数;在硝酸总用量不变前提下,仅靠改变硝酸浓度和流比的组合无法显著改善洗锝工艺段洗锝效果,同时,洗涤效果并非随着硝酸浓度改变而单调递变,存在拐点,该拐点处对应的酸度和流比就是该硝酸使用量下洗锝效果最好的组合。  相似文献   

14.
利用文献报道的Th(NO3)4-UO2(NO3)2-HNO3-H2O/30%TBP-正十二烷体系各组分的分配比实验数据对现有的分配比模型进行分析和比对,提出了一个计算该体系各组分分配比的新模型。利用34组实验数据对新模型进行了验证,符合情况良好。计算结果表明,本文提出的模型明显优于原模型,可作为Th(NO3)4-UO2(NO3)2-HNO3-H2O/30%TBP-正十二烷萃取体系中Th(Ⅳ)、U(Ⅵ)和HNO3萃取行为计算机模拟的基础。模型建立的条件为:温度,25℃;U(Ⅵ)浓度,0~100g/L;Th(Ⅳ)浓度,0~232g/L;硝酸浓度,0~4.5mol/L。  相似文献   

15.
采用电子自旋共振谱(ESR)法,研究了酸性条件下•NH2的转化,HClO4体系下反应时间对溶液中自由基产生的影响、pH值对N2H4断键的影响以及HNO3中N是否对溶液中的•NH2有贡献,确定了Pt催化N2H4分解的反应机理。结果表明:在酸性条件下•NH2被DMPO捕捉时反应式为•NH+3+HO-H+DMPO=NH+4+DMPO(•OH),硝酸在Pt催化N2H4体系中不会发生断键产生•NH2,所产生的•NH2是由N2H4断键形成的;在HClO4体系中,随着Pt催化N2H4反应时间的延长,N2H4中N-N断键的趋势逐渐减小,N-H断键的趋势逐渐增大;随pH值的增大,N2H4中N-N断键的速率先快速减小,pH>3后缓慢增大;Pt催化N2H4分解反应中N-N断键和N-H断键两种方式共存,但N-N断键占优;反应体系中N2H4与H浓度之比决定了N-N断键生成•NH2的速率,而•NH2与H的浓度又决定了•NH2转化成产物的速率,这两方面共同决定了N2H4分解的速率。  相似文献   

16.
研究了 HNO3介质中甲基膦酸二甲庚酯(DMHMP) 对Pu(Ⅳ)的萃取性能,考察了DMHMP浓度、NO-3浓度、HNO3浓度以及温度对Pu(Ⅳ)分配比的影响。确定了DMHMP萃取Pu(Ⅳ)的萃合物的组成为Pu(NO3)4·2DMHMP,其萃取反应方程式为: Pu4+(a)+2DMHMP(o)+4NO-3(a) Pu(NO3)4·2DMHMP(o) 其中Pu(Ⅳ)与NO-3形成中性分子,再与DMHMP结合成为中性配合物进入有机相。在实验范围内Pu(Ⅳ)分配比与DMHMP浓度的平方、NO-3浓度的四次方成正比,萃取过程为放热反应,反应的焓变为-34.46 kJ/mol。  相似文献   

17.
结合基础研究数据和工艺实验数据,对核燃料后处理PUREX流程共去污槽(1A槽)中锝的走向进行了分析。工艺实验数据表明:1A槽萃取段中TBP对锝与锆的共萃取行为是影响锝走向的主要因素。硝酸浓度会显著影响TBP对锝与锆的共萃取性能,当c(HNO3)<3 mol/L时,提高硝酸浓度可以促进水解的锆解离生成Zr4+,从而促进锆锝共萃取;当c(HNO3)≥3 mol/L时,硝酸可能会参与锆与锝的萃取。在0.5~5 mol/L的范围内,提高硝酸浓度有利于锝的萃取。在1A槽洗涤段硝酸浓度分布相近的条件下,1A槽中锝的走向取决于萃取段硝酸浓度的分布。萃取段硝酸浓度分布不同,将导致进入1A槽有机产品液(1AP)的锝含量比例不同,萃取段硝酸浓度越高,越有利于锝进入1AP。  相似文献   

18.
为了了解钌在Pu纯化循环中的行为,研究了相接触时间、相比、硝酸浓度对钌(Ru)分配比的影响,并通过台架试验研究了流比、料液酸度、洗涤级数、萃取级数、铀浓度对Ru净化的影响。结果表明:流比(2AF∶2AX)、料液(2AF)HNO3浓度、洗涤级数、萃取级数、铀饱和度对Ru的净化具有显著的影响。台架热试验结果表明,Ru的净化系数高于1 000,远高于设计指标100。  相似文献   

19.
研究了温度、水相中硝酸浓度和水相中钚浓度对30%TBP-正十二烷/硝酸体系中浓钚(两相平衡后水相中Pu(Ⅳ)质量浓度为0.35~11.1g/L时)的分配比D(Pu)的影响。研究结果表明:25℃下,当硝酸浓度大于1.5mol/L时,D(Pu)随着钚浓度的增高而下降;当酸度为0.4mol/L时,钚浓度对钚分配比影响不大。当两相平衡后水相中Pu(Ⅳ)质量浓度为1.34~3.80g/L,水相中硝酸浓度分别为1.5mol/L和3.0mol/L时,在25~60℃范围,钚的分配比随温度增加而增大,最大增大率为39.4%。25℃下,当酸度分别为1.5mol/L、3.0mol/L和4.5mol/L时,30%TBP-正十二烷作为萃取剂时Pu的分配比比根据文献计算出来的30%TBP-煤油体系的值要大一些。但酸度为0.4mol/L时,两个体系中Pu的分配比接近。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号