首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 122 毫秒
1.
《工具技术》2017,(12):140-143
为了提高某龙门铣床y、z向的加工精度,研究了该机床y、z轴关键几何误差的建模、辨识及补偿方法。建立了y、z轴几何误差和加工误差之间的误差模型,得到了影响龙门铣床y、z向加工精度的5项关键几何误差;通过测量龙门铣床y、z轴平面内4条直线的定位误差,辨识出5项关键几何误差;基于龙门铣床的数控系统和建立的误差模型,通过修改加工代码的方法对几何误差进行了补偿。结果表明:龙门铣床关键点的y、z向加工误差分别减小了66.81%和47.17%,几何误差补偿后龙门铣床的加工精度明显提高。  相似文献   

2.
针对某公司研制的THM46100高精度四轴卧式加工中心,提出了一种快速分离转台六项几何误差的方法。借助球杆仪分别采用平行于X、Y、Z轴及锥形的特殊安装方式,进行了转台几何误差分离实验,基于转台几何误差辨识模型,辨识出转台运动产生的3项位移误差δx、δy、δz和2项转角误差εx、εz,并配合激光干涉仪与回转分度仪对转台的定位误差εy进行了实验检测,从而实现了转台6项误差的识别。该方法与传统单项测量法相比,具有操作简单,检测效率高,适合现场测量等优点。  相似文献   

3.
通过理论推导,证明了垂直度误差在作为平移误差元素建模和作为转角误差元素建模时对误差模型的精度和建模复杂度的不同影响。研究结果表明,对于误差建模过程的复杂度,作为平动误差的建模复杂度小于作为转角误差建模,垂直度误差增多时,复杂度的区分更加明显,主要表现在建模矩阵中附加了转角误差矩阵;对于补偿精度,只需要位移补偿的机床,两种建模结果的补偿效果相同,但对于需要角度补偿的多轴机床,作为转角误差建模获得的补偿矩阵的精度要高于作为平动位移。因此,提出在进行五轴机床误差综合建模时把垂直度误差作为平移误差建模的理论。  相似文献   

4.
为降低转动轴几何误差对转台-摆头式五轴机床精度的影响,提出了基于球杆仪的位置无关几何误差测量和辨识方法。基于多体系统理论及齐次坐标变换方法建立了转台-摆头式五轴机床位置无关几何误差模型,依据旋转轴不同运动状态下的几何误差影响因素建立基于圆轨迹的四种测量模式,并实现10项位置无关几何误差的辨识。利用所建立的几何误差模型进行数值模拟,确定转动轴的10项位置无关几何误差对测量轨迹的影响。最后,采用误差补偿的形式实验验证所提出的测量及辨识方法的有效性,将位置无关几何误差补偿前后的测量轨迹进行比较。误差补偿后10项位置无关几何误差的平均补偿率为70.4%,最大补偿率达到88.4%,实验结果表明所提出的建模和辨识方法可用于转台-摆头式五轴机床转动轴精度检测,同时可为机床精度评价及几何精度提升提供依据。  相似文献   

5.
针对三轴义齿雕铣机在加工过程中存在空间误差较大、加工精度较低等缺点,提出了一种对空间误差实施解析与补偿的新方法。首先分析机床拓扑结构,利用多体系统理论确定机床低序体阵列和运动学约束链,建立空间误差模型。然后对三轴雕铣机的各项几何误差进行测量并求解其空间误差值,分别计算各项几何误差相对于机床空间误差的相关性系数,以辨识对空间精度影响较大的重要几何误差分量。最后利用线性回归模型建立空间误差与位置的隐射函数,以便建立空间误差补偿模型。以z轴为例,对所建立的误差补偿模型进行实验验证。结果表明通过补偿后z轴空间误差从1. 26 mm降低到0. 735 mm,降幅为41. 7%,义齿加工精度得到了有效的提高,可见该方法有一定的实用价值。  相似文献   

6.
三轴联动精密工作平台是激光显微镜机械系统中载物的关键部件。工作平台采用多层式结构,以压电陶瓷直线电机作为驱动,由双对称滚珠直线导轨带动两托板在x、y两方向上微位移精密运动;以伺服电机和滚珠丝杠配合带动载物板在z方向上运动。研究影响工作台精度的主要原因,通过误差分析与测量建立了误差补偿模型。最终验证证明,通过误差补偿工作台达到了更高的定位精度,实现了平台设计的目标。  相似文献   

7.
加工中心精度是影响产品加工精度的最重要因素,误差补偿技术是提高加工中心精度的重要方式。通过分析五轴加工中心的空间误差及建模结果,以TTTRR五轴加工中心为例,建立了综合空间误差模型,为误差补偿打下理论基础;通过研究多种误差补偿技术,提出了一种可以基于建模结果的平动轴几何误差测量新方法,结合旋转轴几何误差的测量结果,最后通过在某台五轴加工中心上进行测量和补偿实验,验证了建模结果的正确性和新位移测量法的有效性。  相似文献   

8.
针对现有误差元素灵敏度分析与后续误差补偿关联性不强的问题,建立运动轴几何误差贡献值模型并提出运动轴几何误差灵敏度分析方法,以获得本身几何误差对机床精度有很大影响的关键运动轴。结合指数积理论和坐标系微分运动理论建立基于误差敏感矩阵的运动轴几何误差贡献值模型,各运动轴几何误差贡献值相加得到机床综合误差模型;计算各运动轴误差权重分量和误差综合权重实现运动轴误差灵敏度分析,选择误差综合权重平均值最大的运动轴为机床关键运动轴,并对关键运动轴的误差补偿方法进行分析讨论。最后,在北京精雕集团的五轴加工中心上进行仿真实验验证。研究结果表明:所建立模型和所提出分析方法是有效的,且只补偿关键运动轴的几何误差贡献值能有效地提高五轴机床加工精度。  相似文献   

9.
数控机床主轴系统热误差建模的难点之一,是使用少量的热关键点建立热误差的精确模型。文章以一台龙门铣床为研究对象,首先通过有限元法仿真分析了机床主轴系统的温度场、热应力、热模态和热变形,根据仿真结果在主轴系统上选择了3个热关键点;然后试验测量了热关键点的温度变化和主轴系统沿x、y、z向的热变形;最后通过多元线性回归模型建立了主轴系统的热误差模型。结果表明:x、y、z向热误差模型的拟合精度都超过95%,证明了文章主轴系统热关键点选择方法的正确性。  相似文献   

10.
为提高现有数控机床空间误差分析方法的准确度,本文基于阿贝原则对齐次转换矩阵(HTM)几何误差补偿模型进行优化。首先,推导出XYFZ型三轴机床适用的HTM几何误差补偿模型并给出模型正确使用的前提条件;然后,基于阿贝原则分析了三轴机床的空间误差传递机理,指出阿贝误差对机床定位精度的影响,给出理论计算公式并在机床运动轴上进行实验验证;最后,基于阿贝原则和布莱恩原则对现有的HTM几何误差补偿模型进行优化,采用该模型拟合体对角线空间误差,并与实测机床体对角线误差进行对比验证。现有HTM几何补偿模型可将机床空间误差由41.15μm补偿至16.37μm,补偿率为60.22%;优化后的补偿模型可将机床空间误差补偿至5.32μm,补偿率为87.07%,提高了26.85%。实验结果表明,优化后的补偿模型更加合理,进一步改善了空间误差的补偿精度。  相似文献   

11.
数控机床几何误差与热误差综合建模及其实时补偿   总被引:8,自引:1,他引:8  
为提高数控机床的精度,提出一种数控机床的几何与热的复合误差综合建模方法。通过分析机床在不同温度状态下的误差数据,得到机床误差分布规律;根据几何误差和热误差的不同特性进行误差分离,采用多项式拟合与线性拟合方法建立机床几何误差与热误差的综合数学模型;利用数控(Computer numerical control,CNC)系统的外部机床坐标系偏置功能,应用自行研发的综合误差实时补偿系统进行误差在线实时补偿。该误差补偿方法综合考虑机床几何误差及其在机床不同温度下的变化,全面分析整个温升过程直至热稳态的误差及其变化规律。经检测认证表明,应用该误差补偿方法及其实时补偿系统可使机床在常温下的定位误差由44.1μm降低到3.6μm,补偿91.8%;温升之后的定位误差由26.0μm降低到5.1μm,补偿80.4%,大幅度提高机床的精度。  相似文献   

12.
数控机床几何误差建模及误差补偿的研究   总被引:3,自引:0,他引:3  
基于多体系统运动学理论,建立了一种通用的数控机床几何误差模型,该模型易于实现计算机自动编程,能够广泛的应用于各种不同类型的数控机床上。给出了实现误差补偿的算法和程序流程图,特别针对直线与圆弧的分段处理进行了研究,结出了分段方法及坐标求取方法。最后,以一台三轴立式加工中心为例,对其21项几何误差进行了辩识,通过实验验证了误差补偿的效果。  相似文献   

13.
为了保障转台定位误差谐波补偿准确性,针对一种谐波误差函数计算方法开展研究。 首先分析了转台定位误差谐波补 偿方法,阐述了基于坐标旋转数字计算方法(CORDIC)的谐波误差函数计算原理可行性;针对算法原理误差进行分析,分别建 立了与迭代次数 n、数据位宽 b 的量化模型,明确了算法在谐波补偿值计算过程的总量化误差;根据计算精度要求对 n 和 b 取值 进行设计,在现场可编程门阵列(FPGA)中实现谐波误差函数计算并进行实时误差补偿。 以谐波误差函数理论值为参考,仿真 证明了计算方法的有效性;以自制电路板为实验平台,证明了计算方法的总量化误差模型正确性;搭建转台测试平台验证定位 误差补偿效果,实验结果证明采用本文提出的谐波误差函数计算方法进行补偿,使转台定位精度由 29. 0"提高至 5. 3" 。  相似文献   

14.
A/C轴双轴转台是中、小规格五轴联动加工中心的核心功能部件。分析了A轴、C轴与工作台台面之间的五项几何误差,利用激光干涉仪与RX10回转基准分度器对A轴、C轴的分度误差进行检测与补偿,利用五轴数控系统对A轴轴线与C轴轴线之间的位置误差、A轴轴线与工作台台面之间的尺寸误差进行检测与补偿,并提出了一种即节省成本又能有效降低A轴轴线与C轴轴线之间角度误差的修正方法。  相似文献   

15.
阳佳  王福德 《机械》1999,26(6):15-17
在自行研制的EMCD-Ⅲ误差测控仪上开发出丝杠副动态误差数据采集与分析系统,采用国标验收,统计分析,频谱分析,时域转位分析等多种方法,意在给丝杠副传动误差提供一套完善的分析软件,实现误差分离与误差诊断。  相似文献   

16.
邓绪山  杨兵  刘增民 《机械传动》2011,35(10):31-34
基于影响齿轮动力学的误差主要是齿轮副中大齿轮的基节误差和齿形误差的结论,将每对齿轮副中大齿轮的基节误差和齿形误差合成为啮合误差,啮合误差幅值运用统计学的方法产生.在齿轮系统动力学方程中引入啮合误差,计算系统的幅频响应,并与未考虑随机误差的结果进行比较.  相似文献   

17.
梁磊 《广西机械》2010,(6):69-70
在对定位误差综合分析的基础上,归纳分析了单一基面定位误差的计算方式,并做了实例说明。  相似文献   

18.
郭俊杰  张琳  皮彪 《中国机械工程》2002,13(13):1081-1084
对使用2维检县(球板或孔板)快速检测三坐标测量机的空间误差,进行了较深入的研究,为了高效,准确地实现测量机的误差修正,提出了分离坐标测量机的21项几何误差的算法,并以龙门式结构的三坐标测量机为例,建立了其误差模型。通过计算机数据仿真,验证了此方法的可行性。  相似文献   

19.
安装误差对旋转式惯导系统影响及补偿   总被引:1,自引:1,他引:0       下载免费PDF全文
贾勇  李岁劳  王玮 《仪器仪表学报》2015,36(12):2674-2680
因轴与轴承间同轴度误差、轴系间隙、机械加工精度、安装等因素,旋转式惯导系统会产生各种形式的安装误差。对各种安装关系进行了说明,详细推导并分析了系统存在安装误差时的输出特性及误差调制效应。在理论分析的基础上,针对实际旋转式惯导系统,通过分析主要误差源,建立合适的误差补偿模型,实现对相关误差的补偿。误差补偿结果表明,该补偿方案能同时消除陀螺敏感轴与旋转轴间的不正交误差、与比力相关的漂移以及因旋转而产生的周期性波动误差,具有很高的工程应用价值。  相似文献   

20.
利用虚拟仪器及误差分离技术,构建一种基于Labwindows/CVI软件平台的误差测量系统。介绍了该系统的构成和测量原理,详细地讨论了系统的硬件组成和软件设计,可以实现数据的采集、处理、保存以及动态显示测量结果及软件的计算结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号