首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
针对航空结构用碳纤维增强树脂基复合材料(CFRP)层板结构在低电流(安培级)作用下对其冲击性能和吸能特性的影响进行研究。结果表明,电热作用使得CFRP层板的温度迅速升高,随着电流强度增加,电热作用产生的焦耳热显著增加;同时,CFRP层板的电阻率随电流强度增大而降低,呈现出温敏效应。在相同冲击能量下,随着加载电流强度增加,CFRP层板的冲击响应完全不同,临界损伤冲击应力和最大冲击应力随加载电流强度增大而减小,且下降幅度随之增大;随着加载电流强度增加,CFRP层板对冲击能量吸收显著增加。冲击损伤分析可知,在相同冲击能量下,CFRP层板的冲击损伤面积随着电流强度增加而增大,损伤程度越严重,失效机制由基体裂纹、微小分层转变为大量纤维断裂、基体破碎等,即冲击损伤模式由微弱的冲击损伤转变为可见的冲击损伤;冲击凹坑深度也随着电流强度增加而显著加深,冲击凹坑回弹率也显著降低。  相似文献   

2.
针对航空结构用碳纤维增强树脂基复合材料(CFRP)层板结构在低电流(安培级)作用下对其冲击性能和吸能特性的影响进行研究。结果表明,电热作用使得CFRP层板的温度迅速升高,随着电流强度增加,电热作用产生的焦耳热显著增加;同时,CFRP层板的电阻率随电流强度增大而降低,呈现出温敏效应。在相同冲击能量下,随着加载电流强度增加,CFRP层板的冲击响应完全不同,临界损伤冲击应力和最大冲击应力随加载电流强度增大而减小,且下降幅度随之增大;随着加载电流强度增加,CFRP层板对冲击能量吸收显著增加。冲击损伤分析可知,在相同冲击能量下,CFRP层板的冲击损伤面积随着电流强度增加而增大,损伤程度越严重,失效机制由基体裂纹、微小分层转变为大量纤维断裂、基体破碎等,即冲击损伤模式由微弱的冲击损伤转变为可见的冲击损伤;冲击凹坑深度也随着电流强度增加而显著加深,冲击凹坑回弹率也显著降低。  相似文献   

3.
采用复合材料电热实验平台,测试碳纤维树脂基复合材料(Carbon Fiber Reinforced Polymer,CFRP)电热作用下温度场变化规律,同时从单丝拉伸断裂界面剪切强度、短梁剪切性能变化和剪切断口等多方面揭示电热作用对CFRP力学性能的影响机制。结果表明:电热作用会使CFRP整体温度迅速升高,在约4 min时达到稳态温度,随着电流强度的增大,CFRP层板表面温度越高,当电流强度为8 A(0.44 A/mm2)时,CFRP的表面温度达到151℃;单丝拉伸和短梁剪切界面强度都随着电流强度增加呈现先增加后降低的趋势;小电流时,电热作用产生较少的焦耳热,优化界面性能,提高界面剪切强度,大电流时,电热作用产生的焦耳热过大,对界面产生烧蚀等不可逆损伤,降低了界面结合性能。   相似文献   

4.
本文针对碳纤维增强聚合物(CFRP)复合材料修补结构,基于连续损伤力学和粘结单元模型,在ABAQUS软件中对低速冲击载荷下不同冲击位置和补片层数的CFRP复合材料层合板内部和层间损伤进行了数值分析,并与试验结果进行了对比。选择相对冲击位置为0 mm、10 mm、20 mm、30 mm和40 mm时对应的五种修补结构,通过数值计算和试验,获得了修补结构在低速冲击过程中的冲击力、冲击能量等数据。在保持补片单层厚度不变的前提下,使补片层数从1层增加到5层,计算获得了修补结构的低速冲击响应。研究结果表明:冲头接触修补结构时会对补片造成较大的损伤,补片可以提高含孔损伤母板的抗冲击性能;冲击点离修补结构损伤孔越近,结构受冲击所产生的分层损伤越严重;增加补片的层数可以提高修补结构的抗冲击性能;通过对补片层数进行优化,得到优化层数为2,其对应的修补结构与无修补结构相比分层损伤面积减少了19.9%,较好地提升了母板的抗冲击性能。   相似文献   

5.
缝合复合材料层板低速冲击及冲击后压缩实验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
通过对缝合复合材料层板进行低速冲击和冲击后压缩实验, 研究了不同类型的缝合复合材料层板的冲击损伤特性及冲击后压缩的剩余强度。实验研究表明: 基体损伤和分层是缝合层板与未缝合层板低速冲击的主要损伤模式, 缝合层板具有更好的抗冲击性能, 更高的冲击后压缩强度。缝合密度越大的层板其抗冲击性能越好, 冲击后压缩强度越高。缝合方向为0°的缝合层板较缝合方向为90°的缝合层板具有更好的抗冲击性能和更高的冲击后压缩强度。增加0°方向铺层, 减少45°、-45°方向铺层, 可以提高缝合层板的抗冲击性能和冲击后压缩强度。  相似文献   

6.
由于平纹机织复合材料修补结构对冲击荷载下产生的响应具有多尺度的影响,采用多尺度方法建立数值分析模型,对平纹机织和单向铺层复合材料修补结构冲击响应间的差异进行研究;同时,对不同冲击能量下平纹机织复合材料修补结构的损伤演化和补片形状对结构抗冲击性能的影响也开展了研究。通过建立纤维束微观和代表性单元(representative volume element,RVE)细观模型,预测细观材料性能,进一步采用局部均匀化方法得到平纹机织复材的宏观交叉层合板等效模型(Equivalent cross-ply laminate,ECPL),完成修补结构多尺度抗冲击损伤性能分析模型构建;利用连续损伤力学模型和三维Hashin准则对冲击过程中修补结构损伤演化进行分析,并通过落锤冲击试验力和能量曲线验证了数值模型的准确性。数值和试验结果表明:平纹机织修补结构较单向层合板修补结构具有更好的抗冲击性能;其冲击损伤主要沿着0/90方向分布,随着冲击能量的提高,主要承力部位由补片转移到母板;当冲击能量达到12 J时,胶层开始出现失效脱落现象;圆形补片修补的平纹机织结构具有更好的抗冲击性能。  相似文献   

7.
为确定压缩预应力对复合材料层板抗冲击损伤性能的影响,首先对不同压缩预应力下的碳纤维/双马树脂CCF300/5428层板进行了低速冲击和准静态压痕试验,然后通过热揭层和冲击后压缩试验分别得到了层板分层面积和剩余强度。结果表明:压缩预应力会大幅降低层板的接触刚度和弯曲刚度,从而导致相同冲击能量下层板凹坑深度和背部基体开裂长度增大;对于准静态压痕过程和相同冲击能量下的冲击过程,分层起始载荷和峰值载荷均随压缩预应力的增大而减小;在相同冲击能量下,随着压缩预应力的增大,层板内部分层总面积及冲击能量吸收比不断增大,剩余压缩强度不断降低。因此,压缩预应力会降低复合材料层板的冲击损伤阻抗,对损伤容限性能不利,在对承受压缩载荷结构的试验验证过程中应考虑压缩预应力对抗冲击损伤性能的影响。   相似文献   

8.
为评价无机微/纳米粒子改性对碳纤维复合材料力学性能的影响,采用真空辅助树脂传递模塑成型(VARTM)工艺分别制备了[±45/0/90]_S铺层角度下纳米SiO_2、纳米Al_2O_3、微米SiO_2、微米Al_2O_3改性碳纤维环氧树脂基复合材料(CFRP)。对其横向拉伸、损伤阻抗及损伤容限性能进行测试,通过扫描电镜和水浸超声C扫描检测观察试件内部损伤状态,对比分析无机微/纳米粒子对复合材料的增韧机理。实验结果表明,相比未改性CFRP,无机微/纳米粒子改性CFRP的冲击损伤初始阈值能量显著提高,冲击损伤面积明显减小,纳米SiO_2改性碳纤维增强环氧树脂基复合材料(CF/EP/NSI)试件的横向拉伸断裂模式由单一的脆性断裂转为韧性断裂,最大冲击载荷和低速冲击后压缩强度(CAI)值达到了3484 N,62.4 MPa,相比未改性CFRP分别提升了30.4%,48.2%。[±45/0/90]_S铺层角度下试件的冲击损伤形状为花生状,冲击后压缩破坏模式为穿过中间损伤区域的压缩破坏(LDM)。  相似文献   

9.
对未增韧及增韧后的T700/6421复合材料层板进行了低速冲击实验,讨论了表面凹坑深度(D)、表面凹坑直径(R)、冲击后压缩强度(CAI)及冲击能量(E)的关系,并通过记录冲击过程中的接触力与时间的变化分析了冲击时的损伤过程。实验结果表明,增韧后的复合材料其更容易出现深凹坑及更大的表面凹坑直径,更容易实现目视明显可见损伤(VID)的效果,并通过分析冲击历程响应发现:低速冲击过程中复合材料层板起始产生分层损伤时的时间与冲击能量并没有必然的联系。  相似文献   

10.
为研究铝合金三角形波纹夹芯板受到平头弹冲击后的损伤形式与抗冲击性能,利用一级气炮对铝合金三角形波纹夹芯板的两种冲击位置进行冲击试验。根据试验数据,对比分析三角形波纹夹芯板及等面密度单层板的弹道极限速度与耗能,并结合有限元仿真分析夹芯板的动态损伤过程、动态载荷响应及损伤机理。研究结果表明,三角形波纹夹芯板损伤形式为剪切破坏、撕裂破坏与弯曲变形。波纹板的抗冲击性能低于等面密度的单层板,并且波纹板节点位置的抗冲击性能高于基座位置。当弹体冲击速度较低时,波纹板的耗能低于单层板,随着冲击速度增加,波纹板节点位置的耗能高于单层板,基座位置的耗能与单层板相近。此外,波纹板的动态载荷响应与失效机理均受到冲击位置与弹体冲击速度的影响。  相似文献   

11.
由于复合材料具有组成多元、各向异性等特点,电热载荷作用下碳纤维复合材料内部的响应行为十分复杂。为了研究碳纤维复合材料的电热响应,首先采用自制电热损伤试验平台,测试了不同电流强度下碳纤维复丝试样的表面温度分布,获得了碳纤维复丝电阻随温度的变化规律,初步揭示了碳纤维复丝具有温敏效应。然后,考察了不同电流处理条件下碳纤维复丝拉伸强度、断裂伸长率和拉伸模量的变化规律,并运用SEM和FTIR对电流处理前后材料的形貌和微观结构变化进行了分析。研究结果表明:纤维在通电过程中的产热效应促进了基体的进一步固化,同时提高了复丝界面的粘结性能;然而,当电流强度过大时,复丝的拉伸强度会因纤维本体的损伤或基体及界面层的烧蚀破坏而降低,从而降低了碳纤维复合材料的性能。   相似文献   

12.
采用复合材料电热实验机,对碳纤维/环氧树脂基复合材料(CF/EP)试样进行通电处理,同时测试其表面温度变化,并得出电阻率随温度的变化规律。对通电后的试样进行吸湿处理,获取扩散系数、饱和吸湿率与通电电流之间的关系,之后通过FTIR、弯曲性能测试以及弯曲断口的表面形貌分析研究了通电对试样吸湿行为的影响。结果表明:通电电流强度越大,CF/EP试样表面平衡温度越高,随着温度升高电阻率呈下降趋势;经4 A(ρ=66.8mA·mm~(-2))电流处理的试样,其扩散系数、饱和吸湿率均低于未处理试样,经5A(ρ=83.6mA·mm~(-2))、6A(ρ=100.2mA·mm~(-2))电流处理后,扩散系数及饱和吸湿率均高于未处理试样;小电流处理时,界面性能得到改善,提高弯曲强度,大电流处理对界面有一定损伤,降低弯曲强度,电热/湿作用下,CF/EP试样的弯曲强度下降,下降幅度与吸湿量呈正相关。  相似文献   

13.
采用落锤冲击试验机,进行了现浇梁、叠合梁以及碳纤维增强复合材料(carbon fiber reinforced polymer,CFRP)修复的损伤梁的动力性能对比试验。冲击作用下试件破坏形态以及冲击力与变形时程曲线表明,叠合面在一定程度上抑制了跨中裂缝向上开展的趋势,损伤修复后的叠合梁在冲击荷载下的破坏程度明显减轻,初始损伤减弱了梁跨中位移的滞后现象;相比完好梁,现浇与叠合修复梁抗冲击承载力有着同等程度的提高。基于有效应变计算的修复梁承载能力提升与试验结果的对比显示,CFRP能有效改善并增强构件的整体受力性能,在冲击作用下对构件的实际抗力贡献大于原有构件承载力与FRP受拉能力简单叠加时的理论抗力贡献。  相似文献   

14.
In this study, the damage evolution behavior was evaluated considering the effect of the textile structure and water absorption. Damage observation was conducted by the integration of non-destructive and direct observation methods. Candidate textile reinforcements were T300-3k plain woven fabric (PW) and T700S-12k multi-axial knitted fabric (MA). The effect of water absorption on the performances of compression after impact (CAI) and PIF were small in PW CFRP laminates. Conversely, PIF properties of water-absorbed MA CFRP laminates drastically decreased than that of dry ones. CAI strength was not affected by water absorption. PIF performance of dry MA CFRP was fairly higher than that of the others. From the precise observation, some evidences of interfacial deterioration caused by water absorption were confirmed in both PW and MA CFRP laminates.  相似文献   

15.
《Composites Part A》2002,33(4):483-493
The effect of resin and fibre properties on composite impact, compression after impact (CAI) and mode II energy release rate (GIIC) performance has been studied. Impact events were instrumented to record values of Pc, the critical load for initiation of impact damage. Impact response of the laminates was strongly influenced by the fracture toughness of the resin. In contrast, use of high strength and high stiffness fibres did not improve the resistance to impact. The differences in impact and CAI response of the laminates were largely a consequence of the impact damage created at the damage threshold, Pc, rather than of the differences in delamination growth. As a strong correlation was found between GIIC values measured by delamination tests, and those calculated from measurements of Pc, it is suggested that instrumented impact testing may be a more convenient way of determining GIIC in CFRP laminates than delamination tests.  相似文献   

16.
Thirteen rectangular RC column specimens, constructed at 1/3 scale, were tested under axial loading to investigate the use of advanced composites in repairing heat-induced damage. Eleven of the column specimens were subjected to elevated temperatures of 500 °C for 3 h. Nine heat-damaged columns were repaired using carbon fiber reinforced polymer (CFRP) sheets and plates. The effects of wrapping configuration, thickness of wrapping sheets, inclusion of plates as externally-bonded longitudinal reinforcement and the area of plates were examined using seven repair schemes. Test results confirmed that elevated temperatures adversely affect the axial load resistance and axial stiffness of the columns while increasing their toughness. Buckling under pure compressive loads was evident in heat-damaged columns except in those repaired using longitudinal CFRP plates. Partial wrapping with unidirectional CFRP sheets was found ineffective in augmenting the axial load capacity and stiffness of the damaged columns whereas full wrapping increased their axial load resistance and toughness. Using externally-bonded longitudinal CFRP plates, confined with circumferential wraps, significantly enhanced the initial axial stiffness and axial load resistance of the damaged columns. However, none of the seven repair schemes investigated in this study managed to regain the original axial stiffness and load resistance of the undamaged columns.  相似文献   

17.
The influence of nanoclay on the impact damage resistance of carbon fibre–epoxy composites has been investigated using the low-velocity impact and compression after impact (CAI) tests. The load–energy vs. time relations were analyzed to gain insight into the damage behaviours of the materials. The CFRPs containing organoclay brought about significant improvement in impact damage resistance and damage tolerance in the form of smaller damage area, higher residual strength and higher threshold energy level. The presence of nanoclay in the epoxy matrix induced the transition of failure mechanisms of CFRP laminates during the CAI test, from the brittle buckling mode to more ductile, multi-layer delamination mode. Addition of 3 wt% clay was shown to be an optimal content for the highest damage resistance.  相似文献   

18.
冯威  徐绯 《复合材料学报》2018,35(4):1024-1031
首先,针对斜接修补CFRP抗冲击性能差的问题,分别使用基于接触的内聚力模型(SCZM)和基于单元的内聚力模型(ECZM)描述层间分层和斜接胶层破坏,研究CFRP层板的冲击响应和两种失效的演化规律。然后,分析了冲击能量、斜接角度和预拉伸作用对两种失效的影响。结果表明:层间分层起始时间早于胶层破坏,与冲击能量无关;分层和胶层破坏面积随冲击能量增加而增大,胶层破坏面积增加的更明显;斜接角度主要影响胶层破坏,对分层面积几乎无影响;预拉伸作用对两种失效均具有负面作用。最后,进一步讨论分层对胶层破坏的影响,通过与只考虑胶层破坏的情况进行对比,发现层间分层使胶层破坏的面积降低,延缓了胶层的最终失效。  相似文献   

19.
纪孙航  王文达  鲜威 《工程力学》2021,38(8):178-191
建立了火灾作用后和碳纤维增强复合材料(CFRP)加固受火后圆钢管混凝土构件的侧向撞击数值模型,通过不同试验分别验证了模型的准确性。分析了加固受火后构件的撞击全过程,对比了构件的撞击力、跨中挠度和截面弯矩。对构件的抗撞击承载力和抗弯承载力,塑性变形和吸能能力,以及内力分布与发展进行了分析,并给出构件在撞击荷载作用下跨中最大挠度简化计算公式,最后讨论了CFRP加固方式对受火后构件撞击性能的影响。结果表明:采用CFRP加固受火后构件的撞击力平台值和平均截面弯矩提高,跨中挠度和撞击持续时间明显减小,CFRP加固对构件的抗撞击性能和抗弯能力提升显著;构件的抗撞击承载力、抗弯承载力和吸能能力随着受火时间的增加逐渐降低;构件在跨中产生不同程度的塑性变形,其主要通过形成塑性铰吸收能量;在峰值阶段构件的弯矩和剪力分布形态与相应静态荷载作用时差异明显,但在平台阶段时其分布形态与静态荷载作用时一致;简化计算公式可以很好地计算构件撞击后的跨中最大挠度,CFRP加固方式对受火后构件的抗撞击性能影响明显。  相似文献   

20.
对T300/QY8911复合材料层板进行了低速冲击、 冲击后压缩以及冲击后疲劳试验研究。通过对冲击后的层板进行目视检测和超声C扫描获得了层板受低速冲击后的若干损伤特征; 在压-压疲劳试验中, 测量了损伤的扩展情况。讨论了冲击能量与损伤面积以及冲击后剩余压缩强度的关系, 分析了含冲击损伤层合板在压缩载荷及压-压疲劳载荷下的主要破坏机制。结果表明, 低速冲击损伤对该类层板的强度和疲劳性能影响很大, 在3.75 J/mm的冲击能量下, 层板剩余压缩强度下降了65%; 在压-压疲劳载荷作用下, 其损伤扩展大致可分为两个阶段, 占整个疲劳寿命约60%的前一阶段损伤扩展较为缓慢; 而疲劳寿命的后半阶段损伤则开始加速扩展, 并导致材料破坏。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号