首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 46 毫秒
1.
聚合物对W/O乳状液稳定性的影响规律研究   总被引:1,自引:0,他引:1  
根据孤岛聚合物驱现场采出液特征,室内模拟配制了W/O乳状液,研究了聚合物对乳状液表观黏度、液滴直径及油水界面黏弹性质的影响规律.结果表明,采出液中的残留聚合物可显著提高乳状液的表观黏度,当聚合物浓度为400 mg/L时,乳状液黏度达到极大值;大于400 mg/L时,乳状液的黏度不再增大.聚合物浓度增大使W/O乳状液的水珠粒径减小、分布集中;聚合物浓度大于300 mg/L时,水珠粒径基本不变.聚合物可改变油水界面膜的流变性,增强油/水界面的黏弹性模量和复数黏度,增大界面膜的强度,增加乳状液的稳定性.以上效应导致含聚合物的采出液乳化更加稳定,破乳更加困难.  相似文献   

2.
乳化稠油中多重乳滴的形成及对乳状液性质的影响   总被引:2,自引:0,他引:2  
在新滩肯东451区块产出的平均含水58%的稠油(W/O乳状油)中以0.6 mg/g油的加量加入复配乳化剂HATJ72,在50℃搅拌2分钟转相形成的O/W乳状液,含大量复杂的多重乳滴,观测到了以水为最外相的七重乳滴.多重乳滴稳定性差,讨论了影响多重乳滴稳定性的因素:乳化剂及其加量;搅拌强度;温度;Ostwald熟化作用及形成原始乳滴时的油水比.由该区块净化稠油和含水7.2%的塔河稠油加水加乳化剂配制的O/W乳状液中乳滴结构比较简单,绝大多数为W/O/W型.与由肯东稠油加水加乳化剂配制的O/W乳状液相比,肯东含水(58%)稠油加乳化剂转相形成的含水相同(35%)的O/W乳状液,表观黏度较低且黏度较不稳定.简介了获得成功的肯东451站含水稠油乳化降黏集输试验.在含水58%的稠油中按0.6 mg/g油的加量加入乳化剂HATJ72和自由水,转相形成O/W乳状液,输送温度50℃,乳化液滴结构复杂,乳状液稳定性较差,输送至下游5公里处时,管道垂直方向上含水、油、水滴数量、黏度已有很大差异.液滴结构复杂、乳状液稳定性差,是自由水引起的,因此应控制掺水量.  相似文献   

3.
胜利油田金17块稠油油藏采用水驱后采出液乳化严重,地层流动能力降低,导致开发效果变差。通过乳化状态分析、黏度和流变性测试、油水界面张力测试等研究稠油和水的乳化特性,分析乳化稠油的流动特性;通过对油田常用的乳化驱油剂与W/O型乳状液再乳化形成乳状液的乳化状态、粒径、黏度和黏弹性分析,对乳化稠油再乳化特性进行了研究;分析乳化稠油再乳化机理,并对乳化驱油研究提供了思路。结果表明:乳化严重影响稠油乳状液的黏度,在油藏温度(60℃)条件下,含水率为60%的W/O型乳状液,其黏度、黏性模量和油水界面张力分别是脱水稠油的11.9倍、13.49倍和2.49倍。当含水率高于40%时,非牛顿特性变强、黏度开始呈指数式增大、黏性模量增大显著、油水界面张力迅速增大,严重制约了其在孔隙介质中的流动性。当乳化稠油与乳化驱油剂再乳化时,形成W/O/W型多重乳状液。乳状液的粒径、黏度和黏弹性随着W/O型乳状液中初始含水率的升高而增大。当初始含水率为60%时,乳化驱油剂LPA,HPF和SDS与W/O型乳状液再乳化后形成乳状液的粒径分别为91.3,40.6和27.5μm。相比于它们与脱水稠油形成的乳状液,粒径分别增大7....  相似文献   

4.
为降低稠油黏度,改善稠油的流动性能,将α-烯基磺酸盐(AOS)与碳酸钠(Na_2CO_3)复配作为降黏剂,研究了二者加量对稠油乳化降黏的影响,分析了乳化降黏机理。结果表明,AOS耐温性良好,形成的O/W型乳状液稳定性随温度升高而增强。AOS对稠油的乳化降黏效果较好,稠油乳液黏度随AOS加量增大而逐渐降低,AOS加量为2.0%时的稠油降黏效果最佳,降黏率为81.95%。AOS与Na_2CO_3复配对稠油乳化降黏有协同增效的作用,1.0%Na_2CO_3与0.05%AOS按体积比1∶1复配后的稠油乳化降黏效果最佳,稠油降黏率为98.22%;与单独使用AOS相比,AOS与碱复配后的稠油乳液黏度降低,AOS用量减少,经济效益提高。  相似文献   

5.
研究了含水量不同的4种委内瑞拉稠油的乳化降黏特性。所用乳化剂代号WS-4,为复配以其他活性物质的双金属催化聚醚,配成设定浓度的水溶液,加量按O/W乳状液计为250 mg/L。4种O/W稠油乳状液的流变特性不同,其中稠油2393(30℃黏度10.50 Pa.s,密度0.896 g/cm^3,含胶质沥青质35.6%)的乳状液(真实油水体积比60.1∶39.9,水相中WS-4表观浓度628 mg/L)流变性能最佳,在恒定剪切速率下(3.4-34 s^-1)表观黏度随温度升高(30-70℃)先略有增大,以后大幅度下降,随剪切时间延长(0-120 min)先略有增大,以后趋于下降,在恒定温度下(30-70℃)表观黏度随剪切速率增大(3.4-34 s^-1)持续下降,测试过程中乳状液不发生反相,最高表观黏度不超过530 mPa·s。稠油J-20的乳状液有相似的流变特性。在显微镜下观察到这两种稠油乳状液中,乳化剂水溶液完全铺展在油滴表面,原油充分分散,显示近似双连续相结构。从润湿热力学角度讨论了乳化降黏机理,还讨论了液滴尺寸与液滴聚并的关系。图16表2参12。  相似文献   

6.
为深入认识化学驱稠油乳化降黏的作用机制,考察了3种不同结构的聚醚与稠油的界面张力和界面扩张流变性质,测定了聚醚溶液与稠油形成的乳状液的稳定性、粒径和黏度。结果表明,聚醚类表面活性剂具有较长的柔性氧乙烯(EO)链和氧丙烯(PO)链,能形成界面“亚层”,油水界面膜以弹性为主,易与稠油形成稳定的O/W乳状液,显著降低稠油黏度。聚醚的相对分子质量和EO/PO比是影响油水界面张力的主要结构因素,而界面膜强度主要由相对分子质量控制。随聚醚相对分子质量增加,界面膜强度增大,乳状液稳定性增强。聚醚结构、加量和油水体积比对乳状液粒径的影响较小,均在300~500 nm之间变化。相对分子质量分别为8400、12600、14600的3种聚醚均具有良好的稠油降黏效果,当油水体积比为1∶1时,聚醚质量分数在0.2%~0.5%范围内的降黏率>98%。聚醚的相对分子质量和EO/PO比对降黏效果的影响较小。  相似文献   

7.
非牛顿稠油包水乳状液的剪切稀释性   总被引:2,自引:2,他引:0  
王玮  宫敬  李晓平 《石油学报》2010,31(6):1024-1026
以现场稠油和矿化水为工质,制备了多组不同微观液滴分布的W/O型乳状液,结合显微镜观察及测量分析,获得了对稠油包水乳状液微观液滴分布及非牛顿性的定量分析。结果表明,随微观液滴直径的减小,乳状液体系将具有更高的表观黏度,并表现出更强的剪切稀释性;结合颗粒雷诺数(ηr-NRe,p 关系),能够很好的表征剪切率及微观液滴分布对稠油包水乳状液剪切稀释性的共同影响。  相似文献   

8.
王涛  张志庆  王芳  冯丽娟  杨姗 《油田化学》2014,31(4):594-599
配制了一系列油水比不同的原油乳状液,并考察了原油乳状液的黏度和黏弹性。结果表明:原油乳状液含水率越大,分散相液滴体积越小,原油乳状液的黏度越大;当含水率低于30%时,原油乳状液呈现牛顿流体行为,黏度随温度和剪切速率的变化不是很明显;含水率超过30%时,原油乳状液呈现非牛顿流体行为,黏度随温度和剪切速率的变化较明显;含水率越大,原油乳状液的线性黏弹区越小,结构越不稳定,乳状液也越不稳定;加入破乳剂后,原油乳状液的黏度降低;含水率越大,原油乳状液脱水率越大,乳状液越不稳定。  相似文献   

9.
针对稠油黏度大、常规降黏剂在多孔介质中与稠油作用不充分,导致稠油油藏采出程度低等问题,自主研发了高效复合自扩散降黏体系BXD,研究了该体系在不同温度、含水率等因素下对脱水稠油和W/O乳状液黏度的影响.通过沥青质红外光谱、相对分子质量、偶极矩测试以及微观形态观察等方法,研究降黏体系对稠油的主要作用机制.通过填砂管驱替实验,分析降黏体系的驱油效果及油藏适应性.研究表明,降黏体系BXD可以破坏W/O乳状液形态,含水率较低时阻止W/O乳状液的形成,随含水率增大形成O/W乳状液;BXD与油接触时可以迅速自发扩散,渗透进稠油中,削弱沥青质分子之间的氢键缔合,降低沥青质表观相对分子质量和偶极矩,部分拆散沥青质分子重叠堆砌的块状结构.BXD降黏冷采现场试验,油井增油效果明显,有望大幅度提高稠油油藏采收率.  相似文献   

10.
为改善常规稠油乳化剂在集输末端的油水分离问题,以甲基丙烯酸N,N-二乙胺基乙酯(DEAEMA)功能单体、丙烯酰胺(AM)和偶氮二异丁脒盐酸盐(V-50)为原料制备了pH响应型稠油乳化剂。考察了单体配比对乳化剂表面活性的影响,研究了乳化剂浓度、油水比、温度、矿化度对乳化剂降黏性能及稠油乳状液稳定性的影响,分析了稠油乳化剂的pH响应机理。结果表明,当DEAEMA、AM单体质量比为7∶3时,乳化剂的表面活性最好。随乳化剂浓度增加、油水比降低、温度升高,稠油乳状液降黏率逐渐增加。但油水比过低,稠油乳状液的稳定性降低。乳化剂具有显著的p H响应特性,在碱性条件下呈均匀的微球,具有较好的表面活性;在酸性条件下变成透明的高分子溶液,失去表面活性。稠油乳状液的黏度随乳化剂加量的增加而降低,降黏率约99%,抗温抗盐性能较好。通过调节pH值可使DEAEMA质子化或去质子化,从而使得乳化剂表面活性可控,实现稠油乳状液乳化-破乳可控。图14表5参18  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号