首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
为了响应国家节能减排的政策要求,降低石油加工行业中选择性加氢脱硫工艺的能耗。针对选择性加氢工艺中主要的三个生产工序:汽油选择性加氢及分馏工序、重汽油加氢脱硫工序和循环氢脱硫工序,通过采用能量逐级利用原理、烟气余热回收利用技术、贫胺液循环利用装置,在加氢脱硫加热炉前设置一台辛烷值恢复进料装置/反应产物换热器等技术手段,通过工艺改造、优化工艺参数、采用先进工艺,以及改变传统的工艺路线或者工艺流程,取得了良好的节能效果,使得主要生产系统年节约能源折合18.09万tce。  相似文献   

2.
某炼厂汽油池烯烃含量高,为了满足国Ⅵ标准B阶段汽油质量升级要求,决定采用M-PHG技术对催化汽油加氢装置进行改造.M-PHG技术采用全馏分催化汽油预加氢-轻重馏分切割-重汽油加氢改质-选择性加氢脱硫的工艺技术路线和专有催化剂,通过优化工艺参数,烯烃加氢异构、芳构化改质,在实现深度加氢脱硫的同时,大幅降低烯烃含量,辛烷值...  相似文献   

3.
《中外能源》2006,11(5):64-64
为适应原油结构的调整和汽油产品质量升级的需要,九江石化依靠科技进步,继Ⅱ加氢装置在高空速下生产出欧Ⅳ标准柴油,实现加氢技术领域高端突破后,该厂再接再厉,与抚顺石油化工研究院共同对Ⅰ柴油加氢精制装置进行全馏分催化汽油选择性加氢脱硫工艺改造(简称FRS工艺),硫含量降至200μg/g左右,辛烷值损失仅2个单位左右,填补了中国国内全馏分催化汽油选择性加氢脱硫工艺这一技术领域空白。  相似文献   

4.
惠州炼化为了满足全厂汽油升级至国Ⅳ、国Ⅴ标准的要求,新建一套500kt/a催化汽油加氢脱硫装置,该装置采用惠州炼化和北京海顺德钛催化剂有限公司合作开发的"全馏分催化汽油选择加氢脱硫工艺技术(CDOS-FRCN)",由镇海石化工程股份有限公司负责工程设计。工艺运行表明,全馏分催化汽油加氢脱硫工艺流程简单、操作方便、投资省、能耗低,生产国Ⅳ汽油的反应条件温和,辛烷值基本无损失,烯烃收率仅下降2.5%(体积分数),具有较大的优势。利用该工艺生产国Ⅴ汽油时,辛烷值损失较大,在1.8个单位左右,可通过增上第三反应器(加氢脱硫醇反应器)降低反应苛刻度,从而降低辛烷值损失。对于MIP工艺,催化汽油硫含量相对较低,如催化稳定汽油硫含量明显偏高于催化粗汽油,可调整吸收稳定系统操作,解决吸收过度的问题,使催化稳定汽油硫含量在450mg/kg的基础上降低,并稳定在310mg/kg左右,从而降低催化汽油加氢脱硫的苛刻度。  相似文献   

5.
我国成品汽油的主要调和组分有催化裂化(FCC)汽油、催化重整汽油、烷基化汽油、异构化汽油等,其中催化裂化汽油占我国成品汽油的80%以上,而FCC汽油具有高硫含量、高烯烃含量的特点。因此,有效控制催化汽油的硫含量,是控制成品汽油硫含量的关键。中海油惠州炼化分公司为满足全厂汽油升级至国Ⅳ、国Ⅴ标准的要求,新建一套500kt/a催化汽油加氢脱硫装置,该装置采用惠州炼化和北京海顺德钛催化剂有限公司合作开发的"全馏分催化汽油选择加氢脱硫工艺技术",即一段选择加氢+二段选择加氢脱硫工艺,简称CDOS-FRCN。该装置由镇海石化工程股份有限公司(ZPEC)负责工程设计,于2012年2月10日动工,当年12月24日一次开车成功,生产出合格产品。装置标定情况说明,催化汽油经全馏分加氢精制后,加氢精制汽油中,硫的质量分数达到12μg/g,硫醇硫质量分数达到10μg/g,汽油辛烷值(RON)损失小于1.5个单位。CDOS-FRCN技术能够有效降低汽油硫含量,减少辛烷值损失,可为炼油厂生产硫含量小于50μg/g甚至10μg/g的清洁汽油提供经济、灵活的技术解决方案。  相似文献   

6.
张广建 《中外能源》2012,17(10):66-69
我国国Ⅲ标准柴油要求硫含量小于350μg/g,国Ⅳ标准柴油要求硫含量小于50μg/g。洛阳石化增上的2.6Mt/a柴油加氢装置,采用抚顺石油化工研究院(FRIPP)新开发的FH-UDS催化剂。该催化剂加氢脱硫和加氢脱氮活性高,对原料适用性强,可以在较高空速、较低氢油比条件下加工各类柴油原料,生产硫含量小于350μg/g的柴油产品,若调整工艺条件,亦可生产硫含量小于50μg/g的低硫柴油,是生产低硫柴油的理想催化剂,尤其适合处理以直馏柴油为主,掺炼二次加工柴油的混合原料。洛阳石化2.6Mt/a柴油加氢装置运行结果表明:原料和操作条件达到设计要求;在反应压力为7.55MPa、体积空速为2.42h-1、平均反应温度为365℃、氢油体积比为386.9等工艺条件下,加工焦化柴油、直馏柴油、催化柴油和焦化汽油等混合原料,生产出硫含量小于350μg/g的清洁柴油。  相似文献   

7.
九江石化引进石油化工科学研究院“催化裂化汽油选择性加氢脱硫RSDS-Ⅱ技术”成果,在现有120万妇汽柴油加氢装置的东侧,新建一套90万t/a汽油加氢装置,以满足原油劣质化和汽油产品质量升级到国Ⅲ标准的需要。据悉,九江石化为国内首家应用该项新技术的炼油企业,  相似文献   

8.
江波 《中外能源》2009,14(10):64-68
法国Axens公司的Prime—G^+是采用固定床双催化剂的加氢脱硫技术,催化裂化全馏分汽油脱硫率可达到98%,满足生产超低硫规格汽油的要求,具有烯烃饱和量少、辛烷值损失小、液收率高、同步脱臭等特点。锦西石化120×10^4t/a催化汽油加氢脱硫装置采用该技术后,产品标定数据表明,轻汽油(LCN)硫含量分别为42.8μg/g和63μg/g,满足设计值不大于65μg/g的要求,满足京Ⅳ汽油标准;混合产品辛烷值较原料辛烷值分别下降0.9和1个单位,符合辛烷值损失不大于1,5个单位的要求;二烯烃数据满足加氢脱硫反应器进料二烯烃体积分数小于2%的标准;混合产品收率100.01%.瓦斯收率0.1726%,含硫气体收率0.08%;能耗标定分别为18.99kg标油/t和18.59kg标油/t,小于设计值19.1kg标油/t;在满负荷条件下装置运行较为平稳。MCN组分没有单独抽出,造成HCN产品硫含量略偏高。  相似文献   

9.
加氢反应器是各种加氢工艺过程或加氢装置的核心关键设备,其制造工艺复杂、检验项目繁多、运行服役条件苛刻,操作危险性极高,是石化产品中的高端设备。本文主要介绍了加氢反应器各制造工序的流程及各关键工序的质量控制要点,通过一些列的质量控制手段,较好地保证了产品质量。  相似文献   

10.
汽油选择加氢脱硫技术工业应用   总被引:7,自引:0,他引:7  
中国石化洛阳分公司采用抚顺石油化工研究院开发的催化汽油选择性加氢脱硫技术(OCT-M),将直馏柴油加氢装置改为汽油选择性加氢装置,以此来降低汽油混合全馏分的含硫质量分数。工业应用表明,采用OCT-M技术后,重汽油加氢干点上升了5℃,总硫量由1700μg/g降至230μg/g,硫醇硫由加氢前的103μg/g降至42μg/g,研究法辛烷值降低了5.5个单位,马达法辛烷值降低了3.3个单位。通过提高反应深度,加氢汽油总硫的脱除率提高,汽油中硫醇硫含量下降。根据统计函数,建立了汽油加氢装置预分馏塔顶温度(x)与轻汽油硫含量(y)的关系式。若y为500~600μg/g,则x为88~92℃;在y不高于450μg/g时,x应小于85.7℃。  相似文献   

11.
长庆石化1.2Mt/a加氢裂化装置选用壳牌标准催化剂公司的DN-3551/Z-503/Z-3723/Z-673组合催化剂,开工时利用DMDS干法硫化后未进行液氨钝化,一次开车成功,装置运行平稳,能够满足生产需求。但有些指标未达到设计要求,如氢耗较高、轻质产品占比较大等。标定期间,氢油比为959∶1(体积比),氢分压为10.25MPa,加氢精制反应器和裂化反应器的平均反应温度分别为390.6℃和398.9℃。标定结果显示,加氢精制反应器前后脱硫率为98.1%,脱氮率为97.6%;反应单程转化率为57.38%;轻质油收率为91.78%,尾油收率为7.52%。经核算,得出化学氢耗为2.16%(占原料油质量百分数);反应热为168.46MJ/t原料;装置单位能耗为31.158kg标油/t原料。装置运行主要存在两个瓶颈问题:一是原料为高干点且硫低氮高的单一减压蜡油馏分,反应系统循环气中硫化氢含量不足而氨含量高,存在需要补硫的问题;二是系统压力设计低,而且原料性质较差,造成催化剂选型困难和操作苛刻度较高。  相似文献   

12.
黄天旭 《中外能源》2013,18(2):87-92
洛阳石化蜡油加氢装置由反应、分馏、富氢气体脱硫、热回收和产汽系统以及装置公用工程部分等组成,设计年加工能力220×104t/a,以减压蜡油、焦化蜡油和脱沥青混合油为原料,采用抚顺石油化工研究院开发的FFHT蜡油加氢处理工艺技术,催化剂采用FF-18型,主要生产低硫含量的精制蜡油,同时副产少量石脑油和柴油,富氢气体经脱硫后送至制氢装置作原料.利用换热网络优化软件PINCH2.0,对蜡油加氢装置换热网络进行模拟,得出现行工艺条件下换热网络最小冷却公用工程和最小加热公用工程用量,提出以现行换热网络的操作工艺为基础,停运分馏塔进料加热炉,提高反应进料加热炉热负荷,在不增加装置换热网络换热器换热面积前提下,充分利用装置现有换热器换热面积余量,增大换热器的换热负荷.实施换热网络优化方案后,降低蜡油加氢装置耗能105.5kg标油/h,年运行时间以8400h计算,年实现节能886.2t标油,标油价格按照3600元/t计算,年实现经济效益319万元;装置进料量按照295t/h计算,则降低装置综合能耗0.358kg标油/t原料.  相似文献   

13.
长庆石化1.2Mt/a加氢裂化装置原料油是长庆减压柴油,硫含量为0.0950%(质量分数),经过水洗后循环氢中H2S浓度范围在100~200μg/g,不足以保持裂化催化剂的酸性中心,甚至可能会导致催化剂硫化度降低,活性降低,造成加氢效果不理想、反应器床层温度变化等不良反应。装置实际运行情况也验证了如上结论。长庆石化在装置运转初期采用加注二甲基二硫化物(DMDS)进行补充硫化,加注量基本维持在50t/月,全年增加成本800万元。经分析研究后,决定进行停硫试验,以进一步观察和分析停硫对反应的影响和可行性。停硫试验表明,停硫对反应状况产生了一定的影响,循环氢中H2S浓度迅速下降,催化剂活性随之下降,致使反应温度被迫提升了约2℃,但这主要发生在停硫初期一周内,试验后期的反应状况比较稳定,加氢催化活性趋于稳定,这也可能与原料中硫含量有所提高有关。之后恢复注硫措施,催化剂活性得到大幅恢复,转化率回升。开发新型廉价的硫化剂或探索成本较低的补硫方法是目前亟待解决的问题。经分析,可尝试利用单质硫磺作为硫化剂,但其工业化可行性有待进一步研究探索。  相似文献   

14.
郑选建 《中外能源》2011,16(6):84-87
广州石化加氢精制Ⅲ装置采用石油化工科学研究院开发的RS-1000催化剂,其活性组分主要是镍、钨、钼。该催化剂对4,6-DMDBT类稠环位阻硫化物的转化能力远远超过常规加氢精制催化剂,具有优异的柴油超深度脱硫能力。在装置运行1035d后,进行首次大修,并对RS-1000催化剂进行器外再生和活化,补充了部分新剂。催化剂器外再生技术的主要优点,是再生过程不易产生局部过热;催化剂活性恢复程度较高;可以增加加氢装置的开工时数;加氢装置设备不再承受再生含硫气体的腐蚀;经济效益好。RS-1000催化剂器外再生及工业应用结果表明,在原料性质、体积空速相近的条件下,产品质量满足国Ⅲ柴油质量指标要求,且反应器入口温度明显下降,催化剂再生效果好,各项物化性质与新鲜催化剂基本相当,降低了生产成本,节省了检修时间,实现了催化剂长周期使用的目标。  相似文献   

15.
金陵石化公司Ⅲ套柴油加氢装置设计处理量为250×104t/a,原料由直馏柴油、焦化柴油和催化柴油构成,构成比例为直馏柴油占47.6%、焦化柴油占32.8%、催化柴油占19.6%。为应对油品质量升级的要求,2013年3月,该装置更换由抚顺石油化工研究院研发的超深度加氢脱硫催化剂FHUDS-5及FHUDS-6,连续8d试生产3×104t欧Ⅴ标准柴油。与常规FH-UDS、FHUDS-3催化剂相比,FHUDS-5催化剂的加氢脱硫、脱氮活性明显提高,在相同条件下加工同一原料时,所需反应温度低,具有深度加氢脱硫活性好、装填密度低及氢耗低等特点,尤其适合大分子硫化物的脱除,适宜加工高硫柴油馏分原料,生产超低硫清洁柴油;FHUDS-6催化剂为高活性Mo-Ni型,用于加工处理直柴掺兑焦化汽柴油及催化柴油混合油,或单独处理纯催化柴油时,其反应温度比FHUDS-2催化剂降低约10℃,其深度脱硫活性及十六烷值增幅也明显优于FHUDS-2催化剂。结合生产实际,从参数变化、原料性质、产品性质、物料平衡、产品收率、能耗等方面,分析两种催化剂在欧Ⅴ标准柴油生产中的应用。结果表明,FHUDS-5及FHUDS-6催化剂具备加工欧Ⅴ标准柴油的性能,但装置能耗较高,催化剂失活速率加快,精制柴油收率下降。  相似文献   

16.
惠州炼化汽柴油加氢精制装置设计加工延迟焦化汽柴油,为提高乙烯裂解原料品质,降低柴油产品中的硫、氮含量,该装置保持着苛刻的反应条件。针对该装置一反一床层压差连续两次快速上升的现象进行分析,进料中携带的焦粉和金属离子是该装置频繁撇头的主要原因,其中焦粉来自上游延迟焦化装置,金属离子主要为钠离子,脱硫联合装置含碱液和二硫化物的反抽提溶剂进入加氢精制装置原料罐,随装置原料进入反应器,被床层顶部的保护剂吸附,且吸附量逐渐增加,最终使床层顶部催化剂板结,导致一反一床层压差持续上升。通过平稳上游装置操作,减少焦粉夹带,调整含碱二硫化物油走向,避免钠离子污染,彻底清理装置原料罐区,抬高原料抽出口高度,加氢装置内自动反冲洗,以及强化罐区沉降脱水等措施,改善原料质量,该装置实现了连续三年超负荷平稳运行。  相似文献   

17.
郭坤  姜立涛 《中外能源》2011,16(8):78-84
大连石化10×104t/a催化裂化干气制乙苯装置,是目前世界上唯一一套采用催化裂化干气制乙苯第二代技术并保持长周期运行的大型装置。乙苯装置烷基化单元包括烷基化/烷基转移反应部分、吸收稳定部分,采用固定床反应器。其中,烷基化反应器采用多段冷激式,催化干气不需特殊精制、不需加压,分段直接进入反应器,反应温度、压力较低,乙苯收率较高。对2007年8月~2009年1月期间R-103/R-104催化剂运行数据分析看出:大连石化乙苯装置目前采用的3884A1型和3884B型气相烷基化催化剂,以及3884A2型气相烷基转移催化剂,能够满足技术指标及生产需要;同时,从原料催化干气品质、原料苯品质、催化干气进料量、反应温升控制与调节等方面进行总结,对指导装置运行、了解催化裂化干气制乙苯第二代技术的工业化应用,具有现实意义。对气相烷基化催化剂、气相烷基转移催化剂再生工艺的阐述,以及影响催化剂再生周期因素的分析,为干气制乙苯装置长期稳定运行提供借鉴。  相似文献   

18.
加速天然气的生产和消费,发展天然气化工,减轻对石油的需求压力,确保国家能源安全,已成为加速我国化学工业结构调整、强化节能减排的必然趋势。大连石化拥有两套完全独立的制氢装置,单套装置的公称产氢能力为10×104m3/h(标准),每一套装置都包括造气单元和PSA提纯单元。该装置加工的原料为轻石脑油或液化石油气,成本昂贵,操作费用大。提出利用低价、节能的天然气作为装置替代原料的设想。可行性分析认为,天然气基本不含烯烃,且芳烃和环烷烃含量低,氢气产率高,可以避免催化剂积炭,延长催化剂寿命,是制氢的首选原料;加之天然气富含甲烷,其H/C较高,一般在3.8左右,单位产氢量的原料消耗较少。大连石化制氢装置改为加工天然气后,原料精制单元,包括加氢反应器和脱硫反应器、中温变换单元和PSA氢气提纯单元的操作参数均不发生改变,可以大大降低装置的原料消耗和燃料消耗,同时提高了蒸汽的产出量,减少了CO2的排放。  相似文献   

19.
张文绍 《中外能源》2011,16(1):84-89
洛阳分公司于2008年对Ⅱ套重油催化裂化装置进行FDFCC-Ⅲ技术改造,原有反应再生系统流程不变,新增汽油提升管反应器及副分馏塔系统,改造后重油加工能力为1.4Mt/a,汽油改质加工能力为846kt/a。FDFCC-Ⅲ生产运行期间,混合原料油的密度、残炭、硫含量和重金属含量都低于改造前RFCC的值,性质得到大幅改善;操作参数中,反应温度、回炼比和主风用量大幅降低,剂油比由RFCC时的7.1大幅提高到9.8;产品分布中,总轻质液体收率提高了3.81个百分点,丙烯收率提高了4.16个百分点,但轻质油收率下降了6.44个百分点;粗汽油经改质后,汽油硫含量由0.335%降到0.143%,脱硫率达到57.3%,烯烃含量由37.86%降到12.92%,汽油RON、MON分别提高了4.1和3.8个单位;轻柴油的质量没有明显变化;氢转移反应的程度HTC值为1.16,热裂化反应的程度FTC值为2.94;催化剂单耗为0.7kg/t原料。通过优化原料性质,将再生方式由常规再生改为完全再生,并投用外取热器,灵活调整汽油提升管反应温度,控制汽油进料温度在100~120℃、催化剂混合器温度低于再生剂温度50~70℃、重油提升管反应温度在480~485℃,增加副分馏塔中段到气体脱硫装置溶剂再生塔底重沸器流程等措施,实现节能降耗。  相似文献   

20.
薛海锋 《中外能源》2011,16(2):100-103
镇海炼化Ⅱ套加氢装置,系处理30×104t/a焦化汽油与50×104t/a直馏煤油的混合装置,加工能力达80×104t/a。近期,装置反应炉消耗燃料上升,催化剂活性下降,换热器换热效果变差,电耗增加,装置综合能耗已接近13kg标油/t。分析显示,装置综合能耗构成中,燃料气占50%,蒸汽占19%,电耗占23%。通过实施更换反应器上部催化剂,稳定催化剂活性,适当提高加工量以降低单耗,对换热器进行抽芯清洗堵漏,改变加氢反应的混氢点,停用反应加热炉,加强管理和优化操作等节能措施,装置能耗由2008年1~5月份的月均12.88kg标油/t,下降到9.434kg标油/t。但长远来看,装置仍存在能源的不合理利用因素,主要表现为:由于实际工况与设计有很大偏离,反应器后的换热器E201、E202/ABC换热面积不能满足换热要求,反应器出口温度升高,尚有部分热能浪费;汽提塔进料换热器E204/ABCD总换热面积为840m2,但在当前工况下,冷、热料温度均在165℃上下,二者温差很小,换热效果不理想。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号