首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
以偏钨酸铵和硝酸铜为原料,采用EDTA-柠檬酸法制备了含有0%~0.8%(质量分数)稀土氧化物(Ce_(0.8)Sm_(0.2)O_(1.9),SDC)的W-20Cu复合粉体,所制备的复合粉体经压制成形、1250℃烧结2 h后获得SDC/W-20Cu复合材料烧结体。对所制备复合粉体进行物相、形貌的表征;研究稀土氧化物的添加对SDC/W-20Cu烧结体的密度、组织结构和物理力学性能的影响。结果表明:所制备的W-Cu复合粉体平均粒度为100~200 nm;同时,SDC的添加对烧结体的密度和电导率会有轻微的影响,但能够抑制晶粒的长大并明显改善烧结体的力学性能。经1250℃烧结后,SDC/W-20Cu烧结体的相对密度均高于97%;当SDC的添加量为0.6%时,具有最大的抗弯强度和显微硬度HV,分别是1128 MPa和3180 MPa;此外,在室温和600℃的测试条件下,其最大的抗拉强度分别可以达到580和258 MPa。  相似文献   

2.
以偏钨酸铵、硝酸铜和硝酸钇为原料,采用EDTA-柠檬酸法制备了含Y_2O_3(0~0.8%)的Y_2O_3/W-20Cu复合粉体,经成形、烧结获得了Y_2O_3/W-Cu复合材料烧结体。对Y_2O_3/W-Cu复合粉体的物相、形貌进行表征;考察了Y_2O_3的添加对Y_2O_3/WCu复合粉体的烧结性能以及烧结体的微观组织、物理和力学性能的影响。结果表明,所制备的Y_2O_3/W-Cu复合粉体的粒度在100~200 nm,粉体具有良好的烧结性能,其成形压坯经1200℃烧结后,相对密度可达98%以上,导电率高于41%IACS。此外,适量Y_2O_3的添加,可改善W-Cu材料的组织和力学性能,添加Y_2O_3的Y_2O_3/W-20Cu材料的抗弯强度和维氏硬度可达1040 MPa和312 HV。  相似文献   

3.
采用机械合金化结合粉末冶金技术制备W-20Cu(vol%)复合材料.利用扫描电镜和金相显微镜对不同球磨时间的W-20Cu复合材料显微组织进行表征,并对材料的各项物理性能进行测试.结果表明,随着球磨时间的延长,W-20Cu烧结体的组织越来越均匀,Cu相分布也越来越均匀.W-20Cu烧结体密度、收缩率、硬度、抗弯强度随球磨时间的延长而增大;球磨20h的W-20Cu复合粉烧结体热导率达到峰值(130.61 Wm-1K-1),继续球磨,热导率减小.综合考虑所有研究结果,通过机械合金化所制备的W-Cu复合粉体可以获得具有优异综合物理性能的W-20Cu复合材料.  相似文献   

4.
以超细/纳米W-7Cu粉末、TiC粉末为原料,采用机械球磨法制备不同含量TiC(0.3%、0.5%、0.7%、1.0%(质量分数))的W-7Cu复合粉体,经压制、预烧、烧结,获得了W-7Cu-nTiC复合材料。研究了TiC添加量对W-7Cu复合材料的显微组织和力学性能的影响。结果表明:在1300℃烧结后,添加不同含量的TiC,使得W-7Cu材料的晶粒大小从5~10μm细化到2~5μm;相对密度和抗拉强度也得到提高;在TiC添加量为0.3%时,相对密度从98.22%提高到98.63%,抗拉强度从781MPa提高到843MPa;材料的断裂方式从沿晶断裂变为沿晶断裂和穿晶断裂混合的断裂方式。说明TiC的添加,起到良好的细晶强化和弥散强化的作用。  相似文献   

5.
采用机械合金化结合粉末冶金技术制备W-20Cu(vo1%)复合材料。利用扫描电镜和金相显微镜对不同球磨时间的W-20Cu复合材料显微组织进行表征,并对材料的各项物理性能进行测试。结果表明,随着球磨时间的延长,W-20Cu烧结体的组织越来越均匀,Cu相分布也越来越均匀。W-20Cu烧结体密度、收缩率、硬度、抗弯强度随球磨时间的延长而增大;球磨20h的W-20Cu复合粉烧结体热导率达到峰值(130.61Wm^-1K^-1),继续球磨,热导率减小。综合考虑所有研究结果,通过机械合金化所制备的W-Cu复合粉体可以获得具有优异综合物理性能的W-20Cu复合材料。  相似文献   

6.
针对复杂形状纯钛件的精密制备,采用粉末注射成形技术,设计了几种不同粉末组成,制备成催化脱脂型喂料,再经粉末注射成形,烧结成制品。系统研究了烧结工艺参数对钛烧结件致密度、碳氧含量、显微组织和力学性能的影响。实验结果表明: 综合性能较好的P3试样钛件经1250 oC真空烧结2h后,致密度为95.7%,其C、O 含量分别为0. 14%和0. 46%,拉伸强度968MPa,抗弯强度为1141MPa,抗拉强度为720MPa,延伸率为4.5%,晶粒细小均匀,并呈现韧性断裂特征。  相似文献   

7.
采用溶胶-凝胶法和粉末冶金工艺分别制备了颗粒状和网孔状La0.5Sr0.5CoO3-δ(LSCO)粉体及其Ag-LSCO电接触复合材料。优化了溶液pH,溶胶预处理温度等工艺对LSCO粉体微结构的影响,并考察成型压力,烧结温度等对Ag-LSCO材料电学、力学性能的影响研究。采用扫描电镜、X-射线衍射仪、D60K数字金属电导率测量仪和HVS-1000型数显显微硬度计等对LSCO粉体及Ag-LSCO电接触材料进行了微观形貌、物相结构、电导率与硬度等性能表征。结果表明:以柠檬酸为单一胶凝剂,当pH为9.5,在700℃烧结8h可获得颗粒状LSCOp粉体;而以柠檬酸和EDTA为复合胶凝剂时,于前驱体溶液pH=9.5,溶胶预处理温度200℃,烧结温度700℃,8h条件下合成网孔块体结构的LSCOw粉体。经成型压力及烧结制度的优化结果可知,成型压力(1100MPa)、烧结温度900℃,6h 为制备Ag/LSCOw电接触材料的最佳工艺参数。相比于Ag-LSCOp电接触复合材料,Ag-LSCOw表现出更低的电阻率(2.5μΩcm)。  相似文献   

8.
通过均相沉淀获得Cu2WO4(OH)2/CuWO4·2H2O共沉淀物,并对煅烧该沉淀物所得的W、Cu氧化物进行球磨,然后H2还原,得到了含Cu量为30%的W-Cu复合粉末。对该复合粉末的性能进行了表征,并对其烧结体的密度、微结构和力学性能等进行了测试分析。结果表明,热机械化学法制备的W-Cu复合粉末粒度为纳米级,烧结活性高,其压坯在H2气氛中固相烧结可达到96%的相对密度,液相烧结则可达到高于99%的相对密度,烧结体具有细小均匀的微结构和良好的力学性能。  相似文献   

9.
针对无氢碳化中反应速率缓慢、颗粒长大的问题,在无氢碳化过程中添加少量Pt作为催化剂,制备纳米WC粉。采用热压烧结对WC粉进行烧结得到无粘结相硬质合金。研究了Pt添加对WC粉的形貌和烧结性能的影响,以及Pt和烧结温度对烧结样品的致密化,组织和力学性能的影响。结果表明,少量的Pt可显著降低无氢碳化温度,制备的WC粉粒径细小且均匀。随着烧结温度升高,无粘结相硬质合金的致密度增加,晶粒尺寸增大,硬度与断裂韧性增加,但烧结温度过高,出现异常长大晶粒和W2C,导致无粘结相硬质合金的断裂韧性严重下降。最佳烧结工艺为,烧结温度1700 ℃,保温60 min,压力40 MPa,所得无粘结相硬质合金致密度达到98.8%,平均晶粒尺寸为263.6 nm,维氏硬度和断裂韧性分别为2887 kg.mm-2和7.1 MPa.mm1/2。  相似文献   

10.
放电等离子烧结温度对超细晶W-40Cu复合材料的影响   总被引:1,自引:0,他引:1  
采用高能球磨法制备了W-40Cu超细晶复合粉体,继而进行了放电等离子烧结(SPS),获得了致密的超细晶W-40Cu块体复合材料,着重研究了烧结温度对复合材料组织和性能的影响.结果表明,随着烧结温度升高,材料的致密度、硬度和电导率也随之升高;在950℃烧结5 min的W-40Cu复合材料,W颗粒尺寸约300~500 nm,相对致密度达98%,显微硬度HV为287,电导率为17.9 MS/m.  相似文献   

11.
以CNTs、电解Cu粉、Cu(CH_3COO)_2·H_2O为原料,采用混酸处理、分子水平法结合行星球磨两步混合工艺制备含0.5%~2%(质量分数)CNTs的Cu基复合粉末,然后通过放电等离子烧结技术制备了Cu-CNTs复合材料,探讨了制备工艺及CNTs含量对Cu-CNTs复合材料的组织、电导率和力学性能的影响规律。结果表明:当CNTs含量小于1.0%时,采用两步混粉工艺制备的Cu-CNTs复合粉体均匀性、分散性良好,经烧结后可获得致密度高、CNTs分布均匀的Cu-CNTs复合材料;当CNTs含量大于1.0%时,复合材料的致密度及CNTs分布均匀性明显降低;随CNTs含量的提高,复合材料的强度先升高后降低,塑性和电导率趋于降低;相对高能球磨、分子水平法等单一混粉工艺而言,两步法制备的Cu-1.0%CNTs复合材料综合性能更优,其电导率为51.7 MS/m(89.1%IACS),维氏硬度为1130 MPa,抗拉强度为279 MPa,断后伸长率为9.8%。  相似文献   

12.
The properties of W-15 wt.%Cu composites were investigated by preparing two distinct composites of micrometer and nanoscale structures. Micrometer composite was produced by mixing elemental W and Cu powders and nanometer one was synthesized through a mechanochemical reaction between WO3 and CuO powders. Subsequent compaction and sintering process was performed to ensure maximum possible densification at 1000-1200 °C temperatures. Finally, the behavior of produced samples including relative density, hardness, compressive strength, electrical conductivity, coefficient of thermal expansion (CTE) and room temperature corrosion resistance were examined. Among the composites, nano-structured sample sintered at 1200 °C exhibited better homogeneity, the highest relative density (94%) and mechanical properties. Furthermore, this composite showed superior electrical conductivity (31.58 IACS) and CTE (9.95384 × 10- 6) in comparison with micrometer type. This appropriate properties may be mainly attributed to liquid phase sintering with particle rearrangement which induced by higher capillary forces of finer structures.  相似文献   

13.
This study investigated how powder preparation during WC-10Co production with the addition of 10 wt% Al2O3 influenced its microstructural and mechanical properties. Powders were mixed with a mechanical shaker for 10 min and high energy milling for 2, 6, 10, 20, 30, and 50 h. The powders were then compacted at 200 MPa and sintered in a resistive dilatometric furnace for one hour, under an argon atmosphere, at a heating rate of 10 °C / min, and two sintering temperatures (1400 °C and 1550 °C). XRD and SEM/EDS analyses were carried out for both powders, which were sintered in order to examine their composition and morphology. The sintered powders were also characterized in terms of mechanical properties, densification, and dilatometric shrinkage. The results show that samples milled for 50 h and sintered at 1550 °C exhibited microstructures with denser phases than those of samples mixed in the shaker. The properties measured were around 68%, 45%, −0.30, and 280 HV for relative density, densification, dilatometric shrinkage, and hardness, respectively.  相似文献   

14.
In this study the W/Cu and W/ZrC composites have been fabricated by hot-press and then their mechanical properties were compared in addition to their ablation resistance. To produce W-20vol.%Cu composite at first stage the elemental W and Cu powders were ball milled for 3 h in rotation speed of 200 rpm, in which 2% nickel was added in order to reduce the density. The mixed powders were hot-pressed for 1 h at 1400 °C and compact pressure of 30 MPa. Additionally W/40vol.%ZrC composite has been fabricated by hot-pressing of mixed W and ZrC powders in 30 MPa and 2200 °C for 1 h. Since these materials are used at elevated temperature applications, where ablation is the main source of material failure, after producing the composites their ablation resistance was evaluated in a real condition. The results show that not only W–ZrC composite is better than W–Cu composite in mechanical properties, but also in ablation resistance.  相似文献   

15.
《Scripta materialia》2003,48(4):437-441
Low-temperature-sinterable high purity α-alumina powder was mixed with Zr(OH)4 gel synthesized by a precipitation method. The resulting gel mixture was calcined at 600 °C for 2 h. The Al2O3–15wt.%ZrO2 composites were sintered for 2 h in air in the temperature range between 1350 and 1500 °C. Nearly full densification and the maximum bending strength of 932 MPa were achieved for the Al2O3–15wt.%ZrO2 composites sintered at 1425 °C, whereas the highest fracture toughness of 8.5 MPa m1/2 was obtained after sintering at 1475 °C.  相似文献   

16.
An orthogonal experiment scheme was designed to investigate the effects of the Cu content, compaction pressure, and sintering temperature on the microstructures and mechanical and thermal properties of (30–50)wt.%Cu/ Invar bi-metal matrix composites fabricated via spark plasma sintering (SPS). The results indicated that as the Cu content increased from 30 to 50 wt.%, a continuous Cu network gradually appeared, and the density, thermal conductivity (TC) and coefficient of thermal expansion of the composites noticeably increased, but the tensile strength decreased. The increase in the sintering temperature promoted the Cu/Invar interface diffusion, leading to a reduction in the TC but an enhancement in the tensile strength of the composites. The compaction pressure comprehensively affected the thermal properties of the composites. The 50wt.%Cu/Invar composite sintered at 700 °C and 60 MPa had the highest TC (90.7 W/(m·K)), which was significantly higher than the TCs obtained for most of the previously reported Cu/Invar composites.  相似文献   

17.
以低氧氢化脱氢钛粉和陶瓷先驱体聚合物聚碳硅烷(PCS)为原料,通过粉末冶金工艺原位自生制备高强高塑钛基复合材料,探究了PCS的引入对钛基复合材料的控氧效果、烧结致密化过程、基体显微组织和力学性能的影响规律。研究表明:采用湿混包覆工艺可以将PCS包覆于Ti粉表面,有效控制材料制备过程中的氧增,其中制备的Ti-1.0 wt.% PCS复合材料的氧含量为0.21~0.24 wt.%,显著低于未经处理的CP-Ti样品(0.36~0.41 wt.%)。在烧结过程中,PCS受热分解并与Ti基体原位反应生成TiC颗粒,弥散分布在基体中,而Si元素则固溶于Ti基体。PCS的引入对Ti基体的性能具有明显的改善作用,经1200 °C/2 h烧结制备的Ti-1.0 wt.% PCS复合材料致密度达到98.4%,洛氏硬度为47.3 HRC,屈服强度为544 MPa,抗拉强度为650 MPa,延伸率为14.5%,其综合性能指标显著优于CP-Ti样品。  相似文献   

18.
93W-5.6Ni-l.4Fe tungsten heavy alloys with controlled microstructures were fabricated by mechanically alloying of elemental powders of tungsten, nickel and iron by two different process routes. One was the full mechanical alloying of blended powders with a composition of 93W-5.6Ni-l.4Fe, and the other was the partial mechanical alloying of blended powders with a composition of 30W-56Ni-14Fe followed by blending with tungsten powders to form a final composition of 93W-5.6Ni-l.4Fe. The raw powders were consolidated by die compaction followed by solid state sintering at 1300°C for 1 hour in a hydrogen atmosphere. The solid state sintered tungsten heavy alloys were subsequently liquid phase sintered at 1445∼1485°C for 4-90 min. The two-step sintered tungsten heavy alloy using mechanically alloyed 93W-5.6Ni-l.4Fe powders showed tungsten particles of about 6-15 μm much finer than those of 40 um in a conventional liquid phase sintered tungsten heavy alloy. An inhomogeneous distribution of the solid solution matrix phase was obtained in the two-step sintered tungsten heavy alloy using partially mechanically alloyed powders. The two-step sintered tungsten heavy alloy using mechanically alloyed 93W-5.6Ni-l.4Fe powders showed larger elongation of 16% than that of 1% in the solid state sintered tungsten heavy alloy due to the increase in matrix volume fraction and decrease in W/W contiguity. Dynamic torsional tests of the two-step sintered tungsten heavy alloys showed reduced shear strain at maximum shear stress than did the sintered tungsten heavy alloys using the conventional liquid phase sintering.  相似文献   

19.
TiC–TiB2 /Cu composites were prepared by self-propagating high-temperature synthesis with pseudo hot isostatic pressing using Ti, B4 C, and Cu powders. The compressive deformation of the composites at high temperature was investigated. It is found that the maximum compressive strength decreases with the increase of temperature and Cu content. The deformation of the composites includes the steps of elastic, stable rheology, and inaction. The maximum strain is in the range of 5 %–10 %. Before fracture, TiC–TiB2 /40Cu becomes drum-shaped at 1123 K; however, TiC–TiB2 /20Cu only has a brittle fracture along the axial direction of 45°. The results show that the compressive strength of TiC–TiB2 /Cu decreases from 823 to 1223 K. However, the maximum compressive strength of TiC–TiB2 /20Cu reaches 1850 MPa at 823 K, which predicts that this series of composites could be applied to high-temperature compressive materials.  相似文献   

20.
SiC/MoSi2 composites were synthesized at different temperatures by spark plasma sintering using Mo, Si and SiC powders as raw materials. The phase composition, microstructure and mechanical properties of the as-prepared composites were investigated and the sintering behavior was also discussed. Results show that SiC/MoSi2 composites are composed of MoSi2, SiC and trace amount of Mo4.8Si3C0.6 phase and exhibit a fine-grain texture. During the synthesis process, there was an evolution from solid phase sintering to liquid phase sintering. When sintered at 1600 °C, the SiC/MoSi2 composites present the most favorable mechanical properties, the Vickers hardness, bending strength and fracture toughness are 13.4 GPa, 674 MPa and 5.1 MPa·m1/2, respectively, higher 44%, 171%, 82% than those of monolithic MoSi2. SiC can withstand the applied stress as hard phase and retard the rapid propagation of cracks as second phase, which are beneficial to the improved mechanical properties of SiC/MoSi2 composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号