首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 777 毫秒
1.
聚四氟乙烯表面改性技术研究进展   总被引:1,自引:0,他引:1  
综述了国内外聚四氟乙烯(PTFE)表面改性技术的研究进展,主要介绍了准分子激光改性、高能辐射改性、化学改性、高温熔融改性、等离子体改性及离子束注入改性等在PTFE表面改性方面的应用情况,简要叙述了各种改性方法的优势与不足,并对PTFE表面改性的发展趋势进行了展望。  相似文献   

2.
综述了国内外聚四氟乙烯(PTFE)表面亲水改性的研究进展,主要介绍了湿化学处理、低温等离子、辐射接枝、激光处理等方法在PTFE表面改性方面的应用情况,简要叙述了各改性方法的优缺点,并对PTFE表面改性的发展前景进行了展望.  相似文献   

3.
葛正浩  张卫敏  杨军 《塑料》2023,(2):67-71+107
聚四氟乙烯(PTFE)由于具有优异的特性受到了广泛关注,但是其仍存在缺陷,需要通过对其进行改性,提升其复合材料的性能。研究表明,加入有机材料能显著改善PTFE的性能。概述了采用有机材料表面改性、填充改性和共混改性3种方法改性聚四氟乙烯(PTFE)复合材料的研究现状,即分别采用表面改性的钠-萘溶液方法、填充改性的聚苯酯(POB)、聚酰亚胺(PI)、聚苯烯腈(PAN)和聚酰胺(PA)以及共混改性的聚醚醚酮(PEEK)、聚苯硫醚(PPS)和聚甲醛(POM)改性PTFE的研究进展,重点解决了PTFE的高磨损问题,提升了复合材料的耐磨性能,并且分析了其增强机理。最后,对利用有机材料改性PTFE复合材料的研究进行了总结与展望。  相似文献   

4.
Ar等离子体改性PTFE膜接枝丙烯酸研究   总被引:1,自引:0,他引:1  
研究利用Ar等离子体为引发手段对聚四氟乙烯(PTFE)膜进行表面处理,最终实现在PTFE膜表面接枝丙烯酸.通过XPS和ATR-FTIR对改性膜的表面进行表征,表明在PTFE膜的表面形成一层聚丙烯酸(pAAc)薄膜.PTFE-g-pAAc膜的表面亲水性及其表面稳定性比等离子改性PTFE膜(PTFE modified by plasma)具有较大的改善,克服了等离子体改性效果不稳定的缺点.本研究拓展了PTFE膜材料在其他各相关领域的应用,对其他高分子材料也有一定的借鉴意义.  相似文献   

5.
聚四氟乙烯(PTFE)膜因化学性能稳定、耐高温、耐酸碱等特点被广泛应用在化工、纺织、环境、食品等领域。然而,由于PTFE材料的强疏水性和极低表面能,使得PTFE膜润湿性差,难以处理水性溶液,限制了其应用。对近年来常用的钠-萘溶液处理、等离子体接枝、多巴胺改性、表面活性剂改性等PTFE膜亲水改性方法进行了综述。相关研究表明,亲水改性后的PTFE膜可以用于污水处理、膜蒸馏、膜生物反应器等领域。最后对PTFE膜亲水改性的发展趋势进行了展望。  相似文献   

6.
改性聚四氟乙烯活塞环专用料研制   总被引:1,自引:0,他引:1  
研究了青铜粉、玻璃纤维、二硫化钼复合填充改性聚四氟乙烯(PTFE)的力学性能和耐磨性能,结果表明,偶联剂表面处理的方式有效改善了青铜粉与PTFE的相容性;青铜粉、玻璃纤维和二硫化钼的三元协同改性提高了PTFE的耐磨性和硬度,稍微降低了其拉伸强度和断裂伸长率。最终得到了适用于制作中低压压缩机活塞环的改性PTFE的配方(质量含量,下同):青铜粉18%-20%、玻璃纤维10%-12%、二硫化钼5%、PTFE63%-67%。  相似文献   

7.
张永章  王晗  姜建英  安振清  肖建斌 《橡胶科技》2021,19(10):0473-0478
聚四氟乙烯(PTFE)微粉具有良好的综合性能,经常用作材料的改性添加剂。本文首先介绍了PTFE微粉表面改性所采用的辐照处理法、等离子体处理法、化学溶液处理法、高温熔融法和种子乳液聚合法的特点,表面改性可改善PTFE微粉与其他材料共混时分散不均匀、相容性差的缺点,然后阐述了PTFE微粉在氟橡胶、丁腈橡胶、丁苯橡胶、乙丙橡胶、硅橡胶、丁基橡胶和天然橡胶中的应用研究进展。  相似文献   

8.
等离子体在PTFE表面改性方面的研究   总被引:5,自引:0,他引:5  
阐述了等离子体表面改性技术的作用原理,介绍了等离子体在聚四氟乙烯(PTFE)表面改性方面的研究进展。提出了新的设想与展望。  相似文献   

9.
通过多巴胺的自聚附着行为,对聚四氟乙烯(PTFE)中空纤维膜进行亲水改性。采用扫描电镜(SEM)、X射线光电子能谱(XPS)、红外光谱(FT-IR)和接触角(CA)对膜改性前后的表面形貌、化学组成和亲水性进行了表征。研究了改性条件对膜纯水通量的影响,并以牛血清蛋白(BSA)溶液为污染物考察了改性前后膜的抗污染性能。结果表明,多巴胺被成功引入PTFE膜表面,改性12 h时膜表面的F元素含量降低2.14%,O元素含量增加3.06%。膜的亲水性得到显著改善,水接触角由改性前的110°降低至改性后的80°。改性8 h时,纯水通量达原膜通量的1.5倍。改性前后膜孔径变化不大,但改性后的PTFE膜具有更好的抗污染性能,清水清洗后的通量恢复率在90%以上。  相似文献   

10.
聚四氟乙烯表面化学改性研究进展   总被引:1,自引:0,他引:1  
针对聚四氟乙烯(PTFE)表面的难粘接性,与其它材料的不相容性,综述了PTFE表面化学改性的几种常用方法(分别为等离子体处理法、辐射处理法、化学溶液处理法和核壳结构材料改性法)及其改性工艺,简要叙述了各种改性方法的优势与不足,最后介绍了各种表面化学改性方法的使用范围与应用前景。  相似文献   

11.
赵丽 《中国塑料》2011,25(6):8-12
综述了近年来膨胀型阻燃剂的研究现状,包括混合型膨胀型阻燃剂和单组分膨胀型阻燃剂。简要概述了膨胀型阻燃剂的阻燃机理,分析了其存在的不足,指出了其发展趋势。  相似文献   

12.
辐照技术利用电离辐射诱发物理化学反应(例如交联、聚合、接枝、降解等)对材料进行加工或改性,与常规加工方法相比,具有节能、无环境污染等特点。将辐照技术应用于纤维素改性过程近年已成为非动力核技术应用领域研究的热点之一。本工作对目前纤维素的辐照技术及其基本反应机理进行了概述,其中包括纤维素膜材料、纤维素水凝胶、纤维素微晶/纳米材料,并对纤维素辐照改性过程的辐照环境,包括溶剂、敏化剂、温度、辐照剂量、环境氛围、结晶度等进行了总结。  相似文献   

13.
简单介绍了聚对苯撑苯并双噁唑(PBO)纤维的性能与应用,重点阐述了低温等离子处理法、酸碱处理法、偶联剂处理法、辐射处理法和共聚改性法5种常用的PBO纤维改性方法的研究情况。综述表明,无论采用何种改性方法,都能相应有效改善纤维的表面性能,提高纤维与其它材质间的黏结性。同时,指出每种改性的方法都存在一定的缺陷。  相似文献   

14.
表面处理对聚酯膜粘接性能的影响   总被引:2,自引:0,他引:2  
祝铁军  孙丽荣  杨姝 《粘接》2006,27(3):27-29
探讨了聚酯膜的表面进行丙酮清洗表面处理、化学处理和Co60辐照处理,对聚酯膜表面主要元素含量、胶粘剂剥离强度和吸水性的影响。结果表明,丙酮清洗处理后的聚酯膜粘接接头耐久性能低于化学处理,而Co60辐照的聚酯膜粘接接头耐久性能最佳。  相似文献   

15.
聚烯烃填充改性技术进展   总被引:5,自引:0,他引:5  
杜仕国 《化工进展》1998,17(2):26-30
系统阐述了聚烯烃填充改性的最新研究进展,包括采用表面活性剂、偶联剂、低聚物和等离子体处理填料表面的各种技术以及对了聚烯烃进行接枝或辐照处理等界面改性的途径。  相似文献   

16.
采用紫外辐射接枝方法对超高相对分子质量聚乙烯(UHMWPE)纤维表面进行改性。探讨了单体种类及浓度、引发剂、抗氧剂、接枝方法等对UHMWPE纤维表面处理效果的影响,测试了以其作为增强材料的复合材料的层间剪切强度。结果表明:在有氧开放体系下,气相接枝效果好于液相接枝;丙烯酰胺单体的接枝效果优于其它单体;接枝率随接枝单体浓度和接枝时间的增加而增加。采用丙烯酰胺为接枝单体,在光强度为86μW/cm~2条件下,对UHMWPE纤维进行紫外辐射接枝改性,按照一定铺层方式制备的环氧基复合材料的层间剪切强度从未处理的14.59MPa提高到17.36MPa。  相似文献   

17.
综述了近年来国内外纳米氧化铝表面修饰的研究进展情况,按修饰机理区分为物理修饰和化学修饰方法,表面物理修饰方法包括吸附、包覆、辐照处理等,表面化学修饰方法包括偶联剂法、接枝法、接枝-包覆法等,文中对这些方法的特点、修饰机理以及修饰的效果进行简单介绍。  相似文献   

18.
简要介绍了聚醚醚酮(PEEK)的一些特性及应用。综述了近年来用于PEEK薄膜表面改性的几种方法,包括等离子体处理、紫外辐照及湿化学法等。此外,简要概括了改性PEEK表面的表征方法,如扫描电子显微镜、X射线光电子能谱仪和原子力显微镜等。  相似文献   

19.
简要介绍了PBO纤维的结构、性能以及制备方法,综述了PBO纤维的表面改性方法,包括酸处理、碱处理、酶处理、偶联剂处理、辐射处理和等离子体处理等。  相似文献   

20.
活性炭拥有独特的物理化学特性,广泛应用于工业、民用及国防等诸多领域,具有不可替代的重要作用。普通的活性炭已经不能满足人类在生产和生活中日益扩大的需求,所以进一步研究活性炭改性技术成为目前的热点。总结了活性炭在化学改性(氧化改性、还原改性、酸碱改性、金属负载改性和等离子体改性)和物理改性(高温热处理改性和微波改性)两方面取得的研究成果,比较了不同改性方法的技术特征,并对活性炭改性技术的未来发展进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号