首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 531 毫秒
1.
为满足动态环境中移动机器人既要动态避障抵到终点,又要尽可能地做到全局最优的路径规划需求,提出了一种双层优化A*算法与动态窗口法相结合的移动机器人路径规划算法。在传统A*算法求得的全局路径轨迹基础上,首先通过一层全局优化,计算路径节点间斜率,提取关键转折点,大幅度减少路径转折点数量;再通过二层全局优化,延长路径段求得路径交点,判断交点是否通过障碍物的方法,将路径转折点数降到最低;设计动态窗口法的轨迹评价函数,解决了机器人容易陷入“凹”“C”形障碍物的问题,同时保证了障碍物安全距离并选取全局最优的路径轨迹。最后分别在静态与动态的二维栅格地图中对传统A*算法、一层优化A*、二层优化A*以及融合算法进行仿真实验。实验结果表明一层优化A*算法大幅度降低了转折次数;二层优化A*算法将转折点数降到最低,但是路径长度小幅度增加;融合算法实现了机器人实时动态避障抵到终点,而且在保证安全距离的同时更加贴近全局最优规划。  相似文献   

2.
传统A*算法是移动机器人全局路径规划的常用算法之一,但是算法搜索效率低、规划路径转折点多、面对复杂环境中随机出现的动态障碍物无法实现动态路径规划。针对这些问题,在考虑全局最优的基础上将改进A*与DWA算法融合,量化环境中的障碍物信息,根据此信息调节A*算法启发函数的权重,提高算法的效率和灵活性。基于Floyd算法思想设计路径节点优化算法,删除冗余节点,减少转折,提高路径平滑度。基于全局最优设计DWA算法的动态窗口评价函数,用于区分已知障碍物和未知动态、静态障碍物,提取改进A*算法规划路径的关键点作为DWA算法的临时目标点,在全局最优的基础上实现了改进A*与DWA算法融合。实验结果表明,在复杂环境中,融合算法规划路径既能保证全局最优,又能及时有效地躲避环境中出现的动静态障碍物,实现复杂环境中的动态路径规划。  相似文献   

3.
在动态未知环境下对机器人进行路径规划,传统A*算法可能出现碰撞或者路径规划失败问题。为了满足移动机器人全局路径规划最优和实时避障的需求,提出一种改进A*算法与Morphin搜索树算法相结合的动态路径规划方法。首先通过改进A*算法减少路径规划过程中关键节点的选取,在规划出一条全局较优路径的同时对路径平滑处理。然后基于移动机器人传感器采集的局部信息,利用Morphin搜索树算法对全局路径进行动态的局部规划,确保更好的全局路径的基础上,实时避开障碍物行驶到目标点。MATLAB仿真实验结果表明,提出的动态路径规划方法在时间和路径上得到提升,在优化全局路径规划的基础上修正局部路径,实现动态避障提高机器人达到目标点的效率。  相似文献   

4.
A*算法通过启发信息指引搜索方向,被广泛应用于移动机器人的路径规划,但其规划出的搜索路径存在冗余节点且与障碍物相近,无法满足动态避障需求。对标准A*算法进行改进,设计安全A*算法并融合动态窗口法进行路径规划。定义安全距离因子引入A*算法的启发函数中,提高算法规划路径的安全性,同时采用平面结构法对算法规划得到的路径进行优化,根据相邻节点与障碍物之间的位置关系判断该相邻节点间是否存在障碍物,由此减少路径拐点数,提高路径平滑度。由于当移动机器人处于未知环境时,仅靠A*算法不能避开障碍物到达目标点,因此借助动态窗口法的局部避障功能。通过安全A*算法规划全局最优路径节点坐标,设计融合子函数改进动态窗口法的评价函数,解决动态窗口法易陷入局部最优的问题。实验结果表明,在复杂环境中,该方法通过融合安全A*算法和动态窗口法,能够确保在安全路径基础上实时随机避障,使机器人安全到达终点。  相似文献   

5.
传统的路径规划算法只能在障碍物不发生位置变化的环境中计算最优路径。但是随着机器人在商场、医院、银行等动态环境下的普及,传统的路径规划算法容易与动态障碍物发生碰撞等危险。因此,关于随机动态障碍物条件下的机器人路径规划算法需要得到进一步改善。为了解决在动态环境下的机器人路径规划问题,提出了一种融合机器人与障碍物运动信息的改进动态窗口法来解决机器人在动态环境下的局部路径规划问题,并且与优化A*算法相结合来实现全局最优路径规划。主要内容体现为:在全局路径规划上,采用优化A*算法求解最优路径。在局部路径规划上,以动态障碍物的速度作为先验信息,通过对传统动态窗口法的评价函数进行扩展,实现机器人在动态环境下的自主智能避障。实验证明,该算法可以实现基于全局最优路径的实时动态避障,具体表现为可以在不干涉动态障碍物的条件下减少碰撞风险、做出智能避障且路径更加平滑、长度更短、行驶速度更快。  相似文献   

6.
传统的A*算法仅适用于全局的静态环境,在求解路径规划问题时存在搜索效率低,路径不平滑等不足。针对这些问题,进行了以下改进:优化全局路径节点,引入删除冗余点准则与新增节点准则,使得全局路径更加平滑,更符合机器人运动学规律;结合滚动窗口法的思想,在每个滚动窗口内进行局部路径规划,首先根据前一步的节点信息确定局部子目标区域,然后在局部子目标区域内引入避障控制策略进行实时避障。最后通过Matlab软件建立多种栅格地图仿真,从路径轨迹的平滑度、搜索效率与局部规划能力方面将改进后的算法与原算法进行对比,并在动态环境下进行仿真分析,仿真结果表明改进后算法拥有良好局部规划能力,且路径轨迹更加平滑,在复杂环境下搜索效率更高。  相似文献   

7.
基于改进A*算法机器人路径规划研究   总被引:1,自引:0,他引:1       下载免费PDF全文
针对移动机器人全局路径规划问题提出一种改进A*算法。首先建立栅格地图,基于传统A*算法,进行邻域扩展,将传统8邻域扩展到24邻域,使路径方向具有更多选择,减少不必要的转折点。优化改进A*算法的启发式函数,不再采用单一的曼哈顿距离或者欧几里得距离,将其进行融合改进,剔除路径中冗余节点和多余转折点。最后将全局路径与动态窗口法相结合,结合各自的优点,充分考虑到机器人全局最优路径的同时能安全避开障碍物,得到一条平滑轨迹。各个算法进行验证之后采用ROS平台对系统进行仿真分析,实验结果表明,改进后算法具有更优秀的路径规划能力。  相似文献   

8.
摘要: 为了提高移动机器人在作业过程中获得现场环境地图的效率,提出了利用BIM技术建立导航地图的方式,获取IFC信息映射到二维栅格,从而快速构建地图。对于室内移动机器人在移动过程中能更快更好的到达目标点的问题,首先对传统A*算法做改进,将原有的8邻域搜索扩展为48邻域搜索,增加了搜索方向,优化了搜索角度。同时考虑了机器人的安全性,对规划路径进行了改进,使得规划的路径与障碍物保持了一定距离。其次,为了避开场地出现的动态障碍物,采用将改进的A*算法与动态窗口法融合,在保证全局路径最优的基础上,实现避障效果。通过实验仿真,表明了改进的A*算法比传统A*的算法在运行时间上快了2倍以上,路径转折点的角度差比原来减少了28%以上,路径长度上更短且不再紧贴障碍物。而融合算法比改进的A*算法在路径平滑性上有所提高,能及时避开随机障碍物,更加适用于环境变化的室内场景。  相似文献   

9.
针对移动机器人在复杂环境下(包含静态和动态环境)的路径规划效率低的问题,提出了一种改进的A*算法与动态窗口法相结合的混合算法。针对传统A*算法安全性不足的问题,采用障碍规避策略,优化节点的选择方式,增加路径的安全性;针对转折点多的问题,采用递归二分法优化策略,去除冗余节点,减少转弯次数;针对静态环境下路径平滑性不足的问题,采用动态内切圆平滑策略将折线角优化成弧度角,以增加路径的平滑性。对于传统动态窗口法的目标点附近存在障碍物时规划效果不好和容易在凹型槽类障碍物中陷入局部最优的问题,在原有的评价函数中引入了距离偏差和轨迹偏差。最后,对所提的改进A*算法和混合算法分别在静态和动态环境下与其他算法进行仿真比较。从结果可以看出,与传统混合算法相比,临时障碍环境下,路径长度和运行时间分别缩短了13.2%和65.8%;移动障碍环境下,路径长度和运行时间分别缩短了13.9%和44.9%,所提的算法提高了在复杂环境中规划路径的效率。  相似文献   

10.
针对传统A*算法自身节点搜索策略存在路径转折点多、转折角度大、可行路径不是理论上的最优路径等缺点,将传统A*算法3×3的搜索邻域扩展为7×7,同时去除扩展邻域同方向的多余子节点,改进为7×7的A*算法,消除了传统A*算法的3×3邻域搜索和节点移动方向仅为[0.25π]的整数倍的限制,优化了搜索角度。其次,针对移动机器人在复杂环境下动态路径规划问题,将改进7×7的A*算法与动态窗口算法进行融合,设计了一种全局最优路径的动态窗口评价函数,综合考虑移动速度、转角平滑度、安全性等因素,将改进7×7的A*算法与动态窗口法的融合算法与多种算法仿真比较,结果表明:改进7×7的A*算法与动态窗口法的融合算法更具有高效性和可行性。  相似文献   

11.
移动机器人的路径规划是机器人研究的重要领域。文中旨在研究遗传算法对于机器人路径规划问题的适用性。对于路径规划的目标,提出了基于路径长度、路径平滑度和路径安全度等因素综合衡量的方法,并在传统的遗传算法的交叉、变异操作的基础上,针对路径规划问题的特点,增加了捷径寻找、障碍避让、平滑优化等方法。实验表明,此算法在存在形状复杂的障碍物的静态环境中表现良好,其效率与准确性皆满足机器人路径规划的要求。  相似文献   

12.
针对移动机器人局部动态避障路径规划问题开展优化研究。基于动态障碍物当前历史位置轨迹,提出动态障碍物运动趋势预测算法。在移动机器人的动态避障路径规划过程中,考虑障碍物当前的位置,评估动态障碍物的移动轨迹;提出改进的D*Lite路径规划算法,大幅提升机器人动态避障算法的效率与安全性。搭建仿真验证环境,给出典型的单动态障碍物、多动态障碍物场景,对比验证了避障路径规划算法的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号