首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 219 毫秒
1.
氘氚冰靶的均匀性和表面光滑程度对靶的表现非常重要,高质量的冷冻靶要求靶丸表面最大温差不高于0.1 mK,而影响冷冻靶温度场的因素众多。本文采用计算流体力学软件FLUENT研究了套筒壁厚(0.2、05、0.75、1、1.25、1.5、1.75、2 mm)、材料(AL5052、SS304和高纯铜)以及黑腔结构(单凸环和双凸环)对冷冻靶温度场的影响。计算结果表明:黑腔采用双凸环结构,靶丸表面温差较小;随套筒壁厚的增加,黑腔内气体自然对流强度降低,靶丸表面温度场均匀度提高,靶丸表面温差减小;由于铜具有高的导热系数及比热,选用铜作为套筒材料使得靶丸表面温度更低,温度场更加均匀。将套筒壁厚、材料、黑腔结构综合考虑,发现套筒壁厚为1 mm、材料选用高纯铜、采用黑腔结构双凸环设计时靶丸表面温度场均匀性最好。  相似文献   

2.
冷冻靶封装套中辅助热流密度的优化   总被引:2,自引:2,他引:0  
为研究达到控温要求的冷冻靶封装套辅助加热量,建立了带有屏蔽罩和暴风窗的冷冻靶的二维轴对称模型。考虑封装套外屏蔽罩辐射强度和封装套内填充气体压力对冷冻靶温度场的影响,利用FLUENT软件对冷冻靶温度场进行了数值模拟计算。结果表明:合理选择上、下辅助加热带的热流密度及其差值,可使靶丸外表面最大温差降至0.1 mK以下;辐射强度越强,气体压力越大,靶丸表面最大温差越大,为实现靶丸外表面温度均匀性要求所施加的上、下辅助热流密度的差值就应越大。  相似文献   

3.
惯性约束聚变冷冻靶系统中,为成功实现靶丸点火,冰层厚度均匀性需达到99%,表面粗糙度的均方根要小于1 μm。控制靶丸表面最大温差小于0.1 mK能满足以上点火要求。为研究辐射对惯性约束聚变间接驱动靶丸的温度场影响,建立了三维对称球腔冷冻靶系统的计算模型。考虑球腔内部激光入射口封口膜吸收率以及外部辐射温度对球腔内部温度场分布的影响,利用FLUENT软件对球腔冷冻靶温度场进行了数值模拟计算。研究表明:球腔由于自身具有的球对称几何结构,其内部的温度场分布更加均匀;受外界辐射影响,有窗侧靶丸表面温度较无窗侧温度高;辐射温度越高,靶丸表面的绝对温度越高,虽然靶丸表面的温差变化基本可忽略,但要防止由于外界辐射温度过高而导致的DT冰层均匀性恶化,应选用多层屏蔽罩结构降低辐射的影响;激光入射口封口膜吸收率大于0.2时,靶丸表面温差显著增大。  相似文献   

4.
通过建立三维柱腔冷冻靶计算模型,研究了外界环境辐射对间接驱动冷冻靶靶丸及燃料冰层温度场的影响。考虑柱腔内部激光入射孔(LEH)膜透光率对柱腔内靶丸和冰层温度场分布的影响,利用COMSOL软件对柱腔冷冻靶温度场进行了数值模拟计算。研究结果表明:受外界辐射影响,靶丸表面温度场呈两极热、赤道冷分布;LEH膜透光率越大,靶丸外表面温差和冰层内表面温差越大。当LEH膜透光率小于1%时,冰层内表面最大温差低于0.1 mK,可满足冰层均化和保持的要求。实验中,通过在LEH膜上镀不同厚度的铝层调控其透光率,并选择LEH膜镀铝层厚度为35 nm的冷冻靶开展了氘氘冷冻均化实验。结果表明:当LEH膜上的镀铝层厚度为35 nm时,冰层的保持能力得到大幅提升。从X射线相衬图像可知,冰层的厚度均匀性约为80.2%,粗糙度约为1.65 μm,平均厚度约为50.5 μm。  相似文献   

5.
高度均匀光滑的燃料冰层是惯性约束聚变冷冻靶成功点火的物质前提,其制备关键是在靶丸外建立均匀的球形温度场并进行精确控制。本文针对多孔注入冷冻靶系统,建立了三维仿真模型,数值研究了冷冻靶温度场稳态分布与瞬态降温特性,并分析了接触热阻、氦气压力等因素的影响。结果表明:冷臂温度恒定时,靶丸与充气管接触位置为低温区,激光入射口正对处为高温区,最大温差为003 mK;硅臂加热块功率突降后,靶丸表面最大温差在025 s内急剧上升至8788 mK,温度场均匀性显著恶化;与硅爪 套筒完美接触相比,低温胶层的存在可有效改善降温过程中温度场的恶化,但降温响应时间明显增加;1~10 kPa氦气压力范围内,快速降温过程中靶丸温度响应迅速,且最大温差峰值较小,有利于维持靶丸表面的温度均匀性。  相似文献   

6.
为在冷冻靶上成功实现惯性约束核聚变点火,需在打靶前将冷冻靶丸内冰层温度降低1.5 K。针对冷冻靶快速降温过程温度场发生突变导致冰层质量恶化的问题,数值研究了快速降温过程中冷冻靶温度场的瞬态特性,并提出了优化降温方案。数值模拟基于Boussinesq假设,通过UDF编程,获得了降温速率的影响规律,并分析比较了不同延迟时间下延迟降温的数值结果。结果表明:降温开始时,最大温差急剧增大但最终趋于稳定;减小降温速率,可有效改善靶丸表面温度的均匀性,延长冰层的生存时间,使降温结束时冰层质量满足要求;具有特定延迟时间的延迟降温能改善靶丸外表面温度的均匀性从而增加冰层的生存时间,且存在最佳延迟时间使冰层的生存时间最长。  相似文献   

7.
为在冷冻靶上成功实现惯性约束核聚变点火,需在打靶前将冷冻靶丸内冰层温度降低1.5 K。针对冷冻靶快速降温过程温度场发生突变导致冰层质量恶化的问题,数值研究了快速降温过程中冷冻靶温度场的瞬态特性,并提出了优化降温方案。数值模拟基于Boussinesq假设,通过UDF编程,获得了降温速率的影响规律,并分析比较了不同延迟时间下延迟降温的数值结果。结果表明:降温开始时,最大温差急剧增大但最终趋于稳定;减小降温速率,可有效改善靶丸表面温度的均匀性,延长冰层的生存时间,使降温结束时冰层质量满足要求;具有特定延迟时间的延迟降温能改善靶丸外表面温度的均匀性从而增加冰层的生存时间,且存在最佳延迟时间使冰层的生存时间最长。  相似文献   

8.
对冷却流体在球床模块堆内燃料颗粒填充区域中的流动和传热过程进行了研究.数值模拟突然停堆后燃料颗粒区在温差作用下的自然对流过程,分析了瑞利数Ra对燃料填充区域内流场、温度场和局部努塞尔数Nu以及壁面摩擦阻力系数的影响.计算结果表明:当球床模块堆突然停堆时燃料填充区域可形成加热壁面流体上升流动、冷却壁面下降流动的自然循环流动;随着Ra数增大,回流中心向上移动;沿轴向壁面局部Nusselt数和摩擦阻力系数存在极值,并且极值点随Ra数增大而向上移动;与氮气相比,氦气作为冷却介质停堆后具有更均匀的堆芯轴向温度分布.  相似文献   

9.
通过磁控溅射法制备了用于微结构气体探测器(MPGD)的新型类金刚石碳(DLC)阻性电极,研究了靶电流、真空度、元素掺杂等因素对DLC阻性电极面电阻的影响规律,以及DLC阻性电极结合强度和内应力的优化方法。结果表明:随靶电流的增大,DLC阻性电极的面电阻降低;真空度越高,DLC阻性电极的面电阻越小,稳定性越好;氢元素和氮元素的掺杂使得DLC阻性电极的面电阻增大,且氢元素影响更加明显。本文方法为新构型微结构气体探测器的研发和性能提升奠定了技术基础。  相似文献   

10.
冷冻靶制备中温度控制数值模拟   总被引:2,自引:2,他引:0  
在二维轴对称模型下,以及惯性约束核聚变冷冻靶制备的温度控制过程中,利用计算流体力学程序Fluent,对聚变腔内的温度场变化进行模拟。研究了腔内气体的自然对流效应对冷冻靶温度分布的影响,模拟了通过在冷却环上施加一正弦振荡的温度场来降低冷冻靶内表面粗糙度的过程,给出了动态快速冷冻方法中的靶温度随冷却环温度的变化过程。  相似文献   

11.
The future high-temperature gas-cooled reactor (HTGR) is now designed in Japan Atomic Energy Agency. The reactor has many merging points of helium gas with different temperatures. It is needed to clear the thermal mixing characteristics of helium gas at the pipe in the HTGR from the viewpoint of structure integrity and temperature control. Previously, the reactor inlet coolant temperature was controlled lower than specific one in the high-temperature engineering test reactor (HTTR) due to lack of mixing of helium gas in the primary cooling system. Now, the control system is improved to use the calculated bulk temperature of reactor inlet helium gas. In this paper, thermal–hydraulic analysis on the primary cooling system of the HTTR was conducted to clarify the thermal mixing behavior of helium gas. As a result, it was confirmed that the thermal mixing behavior is mainly affected by the aspect ratio of annular flow path, and it is needed to consider the mixing characteristics of helium gas at the piping design of the HTGR.  相似文献   

12.
The ice layers in the deuterium-tritium capsule must be uniform and smooth enough, and the maximum temperature difference of the target surface is not higher than 0.1 mK for high quality cryogenic target. However, there are many factors affecting the cryogenic target temperature field. In this paper, the effects of sleeve wall thicknesses (0.2, 0.5, 0.75, 1, 1.25, 1.5, 1.75 and 2 mm), materials (AL5052, SS304 and high-purity copper) and hohlraum structures (single convex and double convex) on the cryogenic target temperature field were studied with FLUENT software. The results show that the temperature difference of target surface is small when hohlraum structure is double convex ring. With the increase of sleeve wall thickness, the natural convection intensity of the hohlraum and the temperature difference on the surface of the target decrease. There is a lower temperature and more uniform temperature field around target surface when copper is used as sleeve material, because of its high heat conduction and specific heat. Considering the wall thicknesses, materials and hohlraum structures, the surface temperature field of the target is best when the sleeve adopts high-purity copper with thickness of 1 mm, and the hohlraum structure is double convex ring.  相似文献   

13.
Cryogenic target based on indirect-drive concept is concerned widely in the inertial confinement fusion field. An indirect-drive cryogenic target is designed to field on the SGIII laser device of China. Capsule and hohlraum design refers to the NIF ignition target Rev5. The target fabrication encounters many engineering issues because of complicated structures and low temperature experimental environment. A tapered capillary is used to feed and support the capsule. And a jacket is designed to solve capillary fixing, gas filling, sealing and other structural issues. Forming a uniform fuel ice-layer on the capsule inner faces withstanding gravity or surface tension effect is a key feature of this cryogenic target. Thermal mechanical package is designed to have the best capacity of controlling temperature gradient across the capsule with a thermally noncontact method. Thermal analyses conclude the best interface conductance arguments and jacket material for the TMP design. Besides, structural reliability of the target after cooling is conservatively analyzed with an optimized model.  相似文献   

14.
The present work applies the finite element method to calculate the maximum allowable time that cryogenic inertial confinement fusion (ICF) targets can be exposed to infrared radiation (IR). Hence, a 3-D numerical model integrated with discrete coordinate radiation model was developed to investigate the influence of transmittance of the laser entrance holes (LEHs) and boundary conditions on the temperature field distribution and the maximum DT layer deterioration time for CH, Be, and diamond capsules. Our study shows that introducing such a radiation model can accurately obtain more detailed spatial and temporal distribution information in the ICF targets. The simulation results demonstrate that the Be and diamond capsules provided much better temperature field homogenization than the CH capsule under equivalent boundary conditions, but the CH capsule was heated more by IR radiation than the Be and diamond. In addition, the maximum DT layer deterioration time was significantly increased to 3 s when decreasing the transmittance of the LEH from 0.2 to 0.01. However, either reducing the capsule IR absorption or increasing the inner hohlraum IR absorption demonstrated no conclusive increase in the maximum DT layer deterioration time. These results are expected to provide useful parameters in the design of cryogenic targets and shroud systems.  相似文献   

15.
To enhance heat transfer efficiency on first wall (FW) of ITER China Helium-Cooled Ceramic Breeder-Test Blanket Module (HCCB-TBM), CFD numerical simulation method is adopted. On the basis of calculating helium gas cooling scheme of FW smooth channel, FW structural temperature gradient, maximum wall temperature, average heat transfer coefficient, and pressure drop of channel are selected as evaluation indexes. Numerical simulation comparison are performed on heat transfer schemes like placing transversal ribs and V-shaped ribs in the flow channel of front wall and the helium gas turbulence intensity and the heat transfer area are improved through optimizing the distance and angle between V-shaped ribs and other parameters to enhance heat transfer. The optimization scheme of helium-cooled FW for HCCB-TBM through the three dimensional numerical simulation is: V-shaped ribs are placed on the inner surface of front wall, the rib cross section is 1 mm × 1 mm, the distance between rib pitches is 10 mm and the rib angle is 60°. Under the same helium cooling condition, compared with the FW smooth channel, the optimized V-shaped rib scheme enhances the average heat transfer efficiency by about 70 % and the FW maximum temperature drops by 349.3 K. The result provides support for further research on FW helium cooling heat transfer enhancement experiment and engineering design optimization for China HCCB-TBM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号