首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 395 毫秒
1.
某低品位复杂难选铁矿,铁主要以褐铁矿形式存在,褐铁矿与脉石矿物紧密共生,导致强磁选精矿铁品位偏低,难以获得合格铁精矿。通过试验发现,采用高梯度强磁选预富集—流态化磁化焙烧—弱磁选工艺可以高效利用该褐铁矿,重点考察了焙烧温度、焙烧时间、还原气氛和气量,以及焙烧产品磨矿细度、磁感应强度等参数对强磁精矿磁化焙烧指标的影响。同时,详细分析了焙烧前后试样中铁物相及嵌布特征的变化情况。结果表明,针对铁品位36.58%、粒度为-0.074 mm占83.73%的强磁精矿,在焙烧温度500℃、焙烧时间15 min、还原气体CO浓度20%、总气量600 mL/min,焙烧产品磨矿细度为-0.043 mm占90%、磁场强度0.15 T的试验条件下,采用流态化磁化焙烧—弱磁选工艺,最终获得了产率59.01%、铁品位58.69%和铁回收率85.89%的铁精矿。研究结果为该类难选铁矿资源的高效利用提供了一种新的技术途径。  相似文献   

2.
针对海南儋州某褐铁矿矿石性质,采用阶段磨矿多段分选工艺,进行了强磁选、絮凝浮选、磁化焙烧及弱磁选等选矿试验研究。第一段磨矿细度为-0.074 mm68%的原矿经一次强磁粗扫选,混合精矿进入二次磨矿,-0.074mm占95%的磨矿产品絮凝去泥后进入混合胺反浮选,浮选精矿再磁化焙烧—弱磁选,可得到铁品位60.45%、回收率52.48%的最终精矿。  相似文献   

3.
针对海南儋州某褐铁矿矿石性质,采用阶段磨矿多段分选工艺,进行了强磁选、絮凝浮选、磁化焙烧及弱磁选等选矿试验研究。第一段磨矿细度为-0.074mm68%的原矿经一次强磁粗扫选,混合精矿进入二次磨矿,-0.074mm占95%的磨矿产品絮凝去泥后进入混合胺反浮选,浮选精矿再磁化焙烧一弱磁选,可得到铁品位60.45%、回收率52.48%的最终精矿。  相似文献   

4.
鞍山地区红铁矿选矿技术研究   总被引:2,自引:5,他引:2  
按矿物组成、结构构造、矿物嵌布粒度、原矿品位对鞍山地区东鞍山铁矿石、齐大山铁矿石的资源特点进行了分析。介绍了鞍山地区过去应用和现在改进的连续磨矿、单一碱性正浮选工艺,阶段磨矿、重选-磁选-酸性正浮选工艺,焙烧-磁选工艺,连续磨矿、弱磁-强磁-阴离子反浮选工艺,阶段磨矿、粗细分级、重选-磁选-阴离子反浮选工艺,并分析了上述各个工艺流程的特点,对鞍山地区红铁矿下-步选矿技术进步提出建议。  相似文献   

5.
东鞍山烧结厂浮选尾矿铁品位为17.20%,铁主要以赤(褐)铁矿形式存在,分布率达70.17%,磁铁矿含量较少。为高效回收利用该浮选尾矿,采用预富集—磁化焙烧—磁选工艺流程开展系统的试验研究,并对磁化焙烧前后矿样进行XRD、铁物相分析。结果表明:磁选预富集精矿在焙烧温度560 ℃、焙烧时间12 min、充气量0.03 m3/h、CO浓度30%的较优条件下进行磁化焙烧,焙烧产品磨矿至-0.025 mm含量占98%,在磁场强度为104 kA/m的条件下经弱磁选别,可获得精矿铁品位63.02%、铁回收率81.39%的技术指标;预富集精矿通过磁化焙烧,赤(褐)铁的分布率由66.98%减少至2.85%,磁性铁的分布率由13.98%增大至88.36%,表明磁化焙烧能高效地实现弱磁性铁矿物向强磁性铁矿物转化,经磁选可有效回收。  相似文献   

6.
甘肃肃北某铁矿嵌布粒度细,铁矿物分布粒度小于70μm;矿石中磁性铁矿物占64.29%,弱磁性铁矿物占30.68%,这给铁矿物的有效分选带来难度.针对该矿石特点,创新性的采用“三段磨矿-弱磁选-中矿强磁抛尾后焙烧-再磨弱磁选”的工艺流程进行选铁试验,结果为:铁精矿品位63.50%、回收率52.73%,铁富集物品位41.85%、回收率28.87%.尾矿品位降至8.25%.  相似文献   

7.
针对酒钢镜铁山弱磁性难选氧化铁矿, 采用不同焙烧装置进行磁化焙烧, 所得焙烧矿在相同工艺下磨矿、相同弱磁选工艺条件下选别, 对比了焙烧装置对焙烧矿产品性能的影响。结果表明: 无论采用竖炉、酒钢自行研制焙烧罐、马弗炉还是新型悬浮焙烧装置焙烧酒钢弱磁性铁矿, 其焙烧产品中弱磁性矿物均相变为磁性矿物, 焙烧产品比磁化系数存在差异。竖炉、焙烧罐、马弗炉焙烧物料弱磁选时磁团聚磁链普遍, 而悬浮焙烧产品弱磁选时不存在磁团聚磁链。磁团聚磁链将已达单体解离的脉石包裹带入精矿中, 是影响选别指标的主要原因。实验结果可为该类矿石磁化焙烧装置的筛选及高效开发利用提供技术支持。  相似文献   

8.
鞍山某强磁精矿中菱铁矿含量较高,难以实现有效分选。为此,采用流态化焙烧反应器,在传统还原磁化焙烧的基础上,开展了低温预氧化—超低温还原磁化焙烧—弱磁选试验研究。结果表明:①试样 TFe品位为29.47%,主要脉石成分SiO2含量为52.81%,有害杂质S、P含量较低;铁主要以赤铁矿的形式存在,分布率为79.37%,其次为碳酸铁11.71%、磁性铁3.46%。②在500 ℃和550 ℃的条件下,以工业发生炉煤气 为还原气,直接还原磁化焙烧过程中生成弱磁性浮氏体,难以实现弱磁选铁矿物相的完全磁性转化。③采用低温预氧化—超低温还原磁化焙烧可获得稳定的完全强磁性转化,适宜的流态化磁化焙烧参数为550 ℃预氧 化2.5 min,再450 ℃还原焙烧10 min。④焙烧矿在磨矿细度为-30 μm占92.60%、磁场强度为79.60 kA/m的条件下,可获得精矿全铁品位大于63%、全铁回收率大于84%的良好指标。⑤产品XRD分析、BSE矿相检测、EDS 能谱检测结果显示试验过程中未见弱磁性赤褐铁矿和浮氏体存在,预氧化矿保持了原试样中含铁物相边界的初始形态,菱铁矿矿物相中类质同象替换的Mg、Ca元素在焙烧过程也未发生迁移,磨矿和弱磁选过程也无法 将其分离。  相似文献   

9.
甘肃肃北某铁矿嵌布粒度细,铁矿物分布粒度小于70μm;矿石中磁性铁矿物占64.29%,弱磁性铁矿物占30.68%,这给铁矿物的有效分选带来难度。针对该矿石特点,创新性的采用“三段磨矿—弱磁选—中矿强磁抛尾后焙烧—再磨弱磁选”的工艺流程进行选铁试验,结果为:铁精矿品位63.50%、回收率52.73%,铁富集物品位41.85%、回收率28.87%。尾矿品位降至8.25%。   相似文献   

10.
贵州某难选褐铁矿选矿试验研究   总被引:7,自引:2,他引:5  
贵州某铁矿主要铁矿物为褐铁矿和赤铁矿,脉石矿物主要为粘土、绿泥石等铝硅酸盐,铁矿物嵌布粒度细,共生关系复杂,磨矿易泥化,属极难选铁矿。采用重选、强磁选、强磁-反浮选工艺进行选矿试验, 所得铁精矿品位和回收率都很低;在磁化焙烧-弱磁选正交条件优化试验基础上,采用磁化焙烧-磨矿分级-细粒弱磁-粗粒再磨弱磁选工艺,最终可获得铁品位61.22%、回收率77.82%的铁精矿。该试验研究为贵州某褐铁矿的开发利用奠定了基础, 同时对于其它类似铁矿开发利用具有一定的借鉴和参考价值。  相似文献   

11.
针对某含铁赤泥样品, 在工艺矿物学研究基础上, 进行了强磁选预富集-闪速磁化焙烧-磨矿-弱磁选扩大连续试验研究。工艺矿物学研究结果表明, 试样中铁品位26.06%, 是主要的回收组分, 其中呈赤(褐)铁矿形式产出的铁占96.85%, 磁化焙烧是选铁的有效途径。闪速磁化焙烧矿XRD分析和MLA分析检测结果表明, 反应炉入口温度740~760 ℃、烟气中CO含量1.8%~2.2%条件下获得的焙烧矿中铁矿物主要为磁铁矿, 矿样磁化效果较为理想。焙烧矿经磨矿-弱磁选工艺处理, 可获得铁精矿产率58.35%、TFe品位 60.15%、铁回收率82.08%的选别指标。  相似文献   

12.
谢金球  张鉴  白永兰 《矿冶》2000,9(3):29-33,23
分析了包钢选矿厂氧化矿弱磁—强磁—反浮选工艺流程现状 ,指出了工艺中存在的不足之处 ,提出了改善磨矿、磁选工艺参数的建议 ;并探讨了从尾矿中回收铁和稀土矿物的可行性。仅从尾矿中充分回收磁铁矿 ,铁选矿回收率即可提高 1 2 9个百分点  相似文献   

13.
袁家村铁矿选矿厂综合尾矿TFe品位17.50%,主要含铁矿物为赤(褐)铁矿和磁铁矿,有害元素硫、磷含量很低,铁矿物嵌布粒度细小,回收难度较大。为了给该尾矿的综合利用提供技术支持,对其进行了预富集-磁化焙烧-磁选工艺研究。结果表明:在磨矿细度为-0.037 mm75%(不磨),强磁选粗选背景磁场强度为478 kA/m,强磁选精选背景磁场强度为398 kA/m的条件下,可获得铁品位为23.24%、铁作业回收率为86.38%的强磁选预富集精矿;强磁选预富集精矿在气体流量5 m3/h、CO浓度30%、磁化焙烧温度560℃、焙烧时间15min、焙烧产物磨矿细度为-0.037 mm90%、弱磁选磁场强度为88 kA/m的条件下,可获得铁品位61.82%、铁作业回收率80.91%、对原矿回收率55.98%的铁精矿产品。  相似文献   

14.
马钢罗河矿选矿厂铁尾矿TFe品位高达13%以上,具有一定回收价值。采用预富集—悬浮磁化焙烧—磁选工艺对罗河矿尾矿开展试验研究。结果表明:试样经一阶段磁选—磨矿—二阶段磁选,磁选混合精矿1粗2精2扫浮选流程分选后,获得的预富集精矿铁品位为29.17%、铁回收率57.91%、硫含量0.402%;预富集精矿在焙烧温度540℃、还原时间30 min、还原气体浓度60%、气体流量600 mL/min、还原剂H2与CO体积比为3∶1、焙烧产品磨矿细度-0.023 mm占95%、磁选场强159.2 kA/m的条件下,最终可获得精矿铁品位64.30%、回收率45.90%、S含量0.110%的技术指标。磁选精矿中主要铁矿物为磁铁矿,且磁性铁矿物中铁的分布率高达98.26%,脉石矿物主要为石英,含量为6.32%。悬浮磁化焙烧—磁选技术有效地回收了尾矿中的铁元素,为马钢罗河矿尾矿的开发利用提供了技术支撑。  相似文献   

15.
肖启飞  石云良  刘军 《现代矿业》2019,35(9):121-125
为了探索设计南芬露天铁矿北山部位矿石的工艺流程,针对该矿石进行了工艺矿物学研究,根据工艺矿物学研究结果设计了阶段磨矿-弱磁-中磁-强磁-磁化焙烧-弱磁选、阶段磨矿-弱磁-强磁-反浮选、阶段磨矿-弱磁-强磁-重选-反浮选3种工艺流程,并进行了试验室流程试验,根据流程试验数据确定阶段磨矿-弱磁-强磁-反浮选流程为最优流程,并获得了铁精矿全铁品位≥66%,全铁回收率≥75%的满意指标。  相似文献   

16.
蔡新伟  葛英勇  瞿军 《金属矿山》2015,44(11):66-69
为了确定重庆某高度氧化的菱铁矿资源的开发利用方案,采用磁化焙烧—磨矿—弱磁选工艺进行了选矿试验。结果表明:在磁化焙烧温度为800℃、焙烧时间为50 min、配碳量为10%、磁化焙烧产物的磨矿细度为-200目占88%、弱磁选磁场强度为119.43 k A/m的情况下,可获得铁品位为58.94%、铁回收率为76.38%的弱磁选精矿;弱磁选精矿中Al2O3、Mg O、Mn O的含量较高,是仅次于Si O2的影响精矿铁品位的因素,这些杂质有待后续反浮选试验脱除。  相似文献   

17.
小沙龙铁矿为典型的沉积变质型铁矿,矿石中铁矿物类型繁多,包括了磁铁矿、赤褐铁矿、菱铁矿等多种类型,铁矿物嵌布极细,选矿难度很大。针对该矿石特点,创新性的采用"三段磨矿-弱磁选-中矿强磁抛尾后焙烧-再磨弱磁选"的工艺流程进行选铁试验,结果为:铁精矿品位59.57%、回收率69.36%,铁次精矿品位44.19%、回收率11.20%。  相似文献   

18.
基于流态化焙烧手段,对鞍山某含菱铁矿难选混合铁矿预富集精矿的磁化焙烧过程物相转变行为进行了研究。参照工业还原气条件的直接磁化焙烧结果显示,预富集精矿中的菱铁矿会产出弱磁FeO,降低磁化率。采用氧化—还原的工艺,可以将菱铁矿改性为弱磁赤铁矿α-Fe2O3和磁赤铁矿γ-Fe2O3,避免分解产物FeO存在。但后续500~550 ℃长时间还原仍会出现弱磁FeO,只有在还原温度450 ℃磁赤铁矿γ-Fe2O3的还原产物Fe3O4能够稳定存在。据此提出了“低温预氧化—超低温还原”磁化焙烧工艺,能够实现含菱铁矿混合难选铁矿的稳定磁性转化,且满足生产适应性需求。经该流态化工艺磁化焙烧后,预富集精矿焙烧矿经弱磁选可达到铁精矿产品铁品位65.15%、铁回收率92.02%的良好指标。实验结果为含菱铁矿混合难选铁矿的磁化焙烧生产工艺开发提供了参考依据。  相似文献   

19.
针对白云鄂博铁精矿杂质含量高的问题,进行分类选矿。以云母型低品位铁-稀土矿石为对象,原矿TFe品位17.48%,主要以磁铁矿和赤铁矿形式存在,且细粒级中分布率较高。通过阶段磨矿-弱磁选回收磁性铁,弱磁尾矿强磁-磨矿-强磁-反浮选回收弱磁性氧化铁工艺,在最佳条件下获得TFe品位为65.49%,产率为20.85%,回收率为66.77%的铁精矿,对该矿石的开发利用具有借鉴意义。  相似文献   

20.
酒钢选厂强磁选工艺产生的铁尾矿品位较高,约为21.50%。尾矿大量堆存不仅占用土地、污染环境,还浪费了大量铁资源。为了研究利用悬浮磁化焙烧技术处理该类尾矿的可行性,缓解酒钢原料不足的矛 盾,对该尾矿进行了预富集—悬浮磁化焙烧—磁选—反浮选扩大试验研究。试验结果表明:①酒钢尾矿经一段弱磁—两段强磁预富集工艺分选,获得了铁品位26.01%、回收率82.71%的预富集精矿,预富集精矿中含铁 矿物主要为赤铁矿、磁铁矿和菱铁矿,脉石矿物主要为石英、白云石和重晶石。②预富集精矿在还原温度530 ℃、CO流量2.0 m3/h、N2流量3.0 m3/h、处理量99 kg/h的适宜悬浮焙烧工艺参数下,稳定试验连续运行了 48 h,取得了磁选管磁选铁精矿平均铁品位51.41%、铁回收率72.39%的技术指标。③酒钢总尾矿采用预富集—悬浮焙烧—磁选—反浮选全流程处理,最终可获得铁品位58.67%、铁回收率57.82%、SiO2含量6.48%的铁精 矿,综合尾矿铁品位12.00%,指标良好。该试验结果为酒钢下一步对该类尾矿资源的回收利用提供了技术依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号