首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
采用电子束物理气相沉积法(EB-PVD)在定向凝固Ni基高温合金DZ125基体上制备了NiCoCrAlY粘结层和YSZ陶瓷层,研究了高温拉压环境下热障涂层的失效模式,并对其进行了有限元分析。实验结果表明,热障涂层的失效与仅受热载荷作用下的有很大不同,仅有热载荷作用下的热障涂层裂纹多萌生于热氧化层(TGO)内部,进而扩展引起热障涂层的失效。而高温拉压试验后热障涂层体系存在两种裂纹,分别萌生于TGO/粘结层界面和粘结层/扩散层界面附近。有限元模拟结果显示TGO/陶瓷层和TGO/粘结层处存在应力状态的转变和应力值的突变,径向应力的突变导致了界面分离现象的产生,而轴向应力的突变加速了垂直于界面裂纹的扩展,并导致了试样的最终断裂。  相似文献   

2.
SiC纤维增强钛基复合材料的横向力学性能   总被引:3,自引:0,他引:3  
采用十字形试样测试分析有C涂层和无C涂层两种SiC纤维增强钛基复合材料的横向力学性能,以横向载荷作用下应力-应变曲线上的非线性拐点计算界面的强度.结果表明,有C涂层的界面横向开裂强度为53 MPa,低于无C涂层的界面开裂强度196 MPa,并且前者在横向载荷作用下沿C涂层与纤维之间开裂,而后者沿反应生成物与基体间开裂;体积分数为30%的多根纤维钛基复合材料的非线性拐点应力低于单根纤维复合材料,这主要是由于残余应力的减少引起,界面强度并没有明显变化.  相似文献   

3.
研究SiC纤维增强钛基复合材料(SiCf/Ti-6Al-4V)室温疲劳行为和损伤演化机制。疲劳试验条件:载荷控制、应力比0.1和加载频率10 Hz。采用疲劳断裂试验建立最大加载应力为600~1200 MPa内SiCf/Ti-6Al-4V的S-N曲线。采用疲劳中止试验以及SEM显微分析研究应力水平对SiCf/Ti-6Al-4V疲劳损伤演化的影响。结果表明,SiCf/Ti-6Al-4V疲劳损伤萌生模式与演化过程与应力水平密切相关。在高应力水平(Smax=1000 MPa),纤维开裂是主要损伤萌生模式。一旦2或3根纤维断裂后,纤维裂纹和基体裂纹开始联接并形成宏观扩展裂纹。在中等应力水平(Smax=800 MPa),基体裂纹萌生与扩展是主要损伤模式。多条基体裂纹萌生于试样外表面棱边和离外表面附近试样内部开裂的纤维基体界面处。基体裂纹均沿垂直于加载方向扩展,且大部分纤维未断裂并纤维桥接基体裂纹。在低应力水平(Smax=600 MPa),仅在C涂层和界面反应层之间和C涂层内部观察到局部界面脱粘现象。  相似文献   

4.
研究SiC纤维增强钛基复合材料(SiCf/Ti-6Al-4V)室温疲劳行为和损伤演化机制。疲劳试验条件:载荷控制、应力比0.1和加载频率10 Hz。采用疲劳断裂试验建立最大加载应力为600~1200 MPa内SiCf/Ti-6Al-4V的S-N曲线。采用疲劳中止试验以及SEM显微分析研究应力水平对SiCf/Ti-6Al-4V疲劳损伤演化的影响。结果表明,SiCf/Ti-6Al-4V疲劳损伤萌生模式与演化过程与应力水平密切相关。在高应力水平(Smax=1000 MPa),纤维开裂是主要损伤萌生模式。一旦2或3根纤维断裂后,纤维裂纹和基体裂纹开始联接并形成宏观扩展裂纹。在中等应力水平(Smax=800 MPa),基体裂纹萌生与扩展是主要损伤模式。多条基体裂纹萌生于试样外表面棱边和离外表面附近试样内部开裂的纤维基体界面处。基体裂纹均沿垂直于加载方向扩展,且大部分纤维未断裂并纤维桥接基体裂纹。在低应力水平(Smax=600 MPa),仅在C涂层和界面反应层之间和C涂层内部观察到局部界面脱粘现象。  相似文献   

5.
基于IN738高温合金基体上涂覆的热障涂层系统(Thermal barrier coating system,TBCs),分析热循环和热梯度机械疲劳加载条件下涂层的应力分布及演变。通过有限元分析研究了热生长氧化层(Thermally growth oxidation,TGO)的应力分布,以预测不同载荷作用下TBCs的失效行为。结果可知,在热循环的基础上施加应变载荷会造成TGO应力性质及大小的改变。只施加温度载荷,在加热过程中TGO/粘结层(Bond coat,BC)界面波峰位置会承受轴向较大的拉伸应力,裂纹多会在此处萌生,且以层间开裂的方式失效。而在温度与机械载荷的共同作用下,冷却过程中会承受较大的拉伸应力,显著增大的轴向应力与径向应力共同作用,使垂直于TGO/BC界面的裂纹沿着界面方向扩展,从而造成陶瓷层(Top coat,TC)剥落。进一步对比分析了同相和反相加载时的应力分布,结果表明反相加载时一次循环周期内会产生拉伸平均应力,更易发生TBCs的失效。  相似文献   

6.
目的研究不同厚度涂层的再制造零件在弯曲疲劳情况下的失效形式。方法利用电弧喷涂对零件进行再制造处理,并进行四点弯曲疲劳实验,利用扫描电镜对不同厚度涂层的再制造零件断口形貌进行观察,研究不同厚度涂层的疲劳裂纹萌生、扩展以及断裂方式。结果疲劳裂纹萌生形式主要为多源疲劳失效,在疲劳裂纹的扩展过程中,不同平面内扩展的裂纹相交,形成了台阶形貌。当涂层厚度为100、200μm时,裂纹主要萌生于四点弯曲实验中应力最集中的部位,萌生于涂层和基体之间,并逐渐地向涂层和基体扩展,直至试样断裂。而涂层厚度为300、400μm时,裂纹萌生部位主要集中于四点弯曲疲劳试验中应力最大部位的两侧,并呈对称式分布,裂纹在界面处连接,使得涂层和基体产生分层现象,之后分层部位处裂纹沿着基体方向扩展,直至试样断裂。结论涂层厚度不同,整个系统的失效模式也不同。对于较薄的涂层,裂纹模式主要为垂直于涂层-基体界面的裂纹,此时拉伸失效占主导。对于较厚的涂层,界面裂纹为主要的裂纹模式,此时剪切失效占主导。  相似文献   

7.
采用有限元法分析了在残余应力和外加横向载荷作用下纤维体积分数对SiC/Ti-6Al-4V复合材料横向拉伸行为的影响。通过弹簧连接纤维与基体界面的重合节点来模拟界面脱粘。结果表明,在界面结合强度一定时,界面脱粘应力(对应于应力-应变曲线上应变的跳跃)受0°方向界面径向残余应力影响较大;在界面脱粘先于基体屈服时,复合材料失效应力(对应于应力-应变曲线上的水平部分)主要取决于纤维体积分数,且体积分数越低,失效应力越高。  相似文献   

8.
304不锈钢钎焊板翅结构疲劳断裂机理分析   总被引:1,自引:1,他引:0       下载免费PDF全文
蒋文春  巩建鸣  涂善东 《焊接学报》2010,31(4):45-48,96
对304不锈钢板翅结构进行疲劳试验,分析疲劳断裂机理.疲劳裂纹从上钎角萌生,然后向翅片扩展,最终导致失效.在钎焊过程中,钎角处生成了较多的脆性化合物,且钎角处应力高度集中,使得裂纹从钎角萌生.疲劳裂纹的扩展经历了4个阶段:(1)裂纹在循环载荷作用下,在钎角脆性化合物启裂;(2)裂纹启裂后,在循环载荷作用下,沿钎角扩展;(3)裂纹跨越钎角和固溶体组织的界面,沿固溶体组织扩展;(4)裂纹跨越翅片和固溶体的界面,进入翅片区域扩展,直至完全断裂.  相似文献   

9.
针对传统宏观力学研究涂层的局限性,开展了基于Hertz理论的等离子喷涂Fe Cr BSi涂层有限元数值模拟研究,得到了涂层表面在不同载荷和摩擦力作用下,涂层主应力与剪切应力的分布特征。分析结果表明:主应力是接触疲劳失效的临界应力,而剪切应力则导致涂层在微缺陷处在较短的时间内诱发萌生微裂纹,不同主应力与剪切应力的协同作用使得涂层失效模式呈现多元化,应力是涂层失效的主要驱动力。摩擦系数的增加导致剪切应力急剧增加,剪切应力造成涂层表面的塑性流动。当塑性流动超过材料的变形极限时,造成表面材料开裂,在循环作用下最终形成裂纹。同时摩擦系数的增加加大了涂层与对摩轴承直接接触相互损伤的可能性。  相似文献   

10.
通过SEM原位拉伸试验观察了P/M Rene 95合金中的非金属夹杂在拉伸状态下导致裂纹萌生、扩展的微观力学行为,结果表明:在原位拉伸过程中,裂纹首先在试样表面的夹杂物处产生,裂纹主要萌生于夹杂物/合金基体的界面;随着外加应力的增加;裂纹极易沿夹杂物/基体界面扩展,向基体深入;最后,部分夹杂与基体完全分离、脱落,一些夹杂物的材料制备过程中被破碎成若干碎片,增加了裂纹萌生的几率。  相似文献   

11.
界面粗糙度对热障涂层残余应力和裂纹演化的影响   总被引:1,自引:0,他引:1  
由于残余应力的作用是造成热障涂层失效剥落的主要因素之一,本工作采用不同幅值的正弦曲线来模拟粗糙度对陶瓷层(TBC)-结合层(BC)界面处残余应力分布的影响;以内聚力模型模拟TBC-BC界面,研究了在外加机械载荷作用下粗糙度对界面裂纹萌生和扩展的影响。结果表明,粗糙度对残余应力分布以及裂纹的形核与扩展有很大的影响。随着粗糙度的增大,陶瓷层和结合层靠近界面的波峰波谷处最大拉/压应力也增大。当施加一定拉伸位移载荷时,最大损伤与裂纹首先在幅值最小的波峰波谷处产生。  相似文献   

12.
根据石墨纤维增强铝基复合材料(C_f/Al基复合材料)显微组织特征构建了其代表性体积单元(RVE),通过基体合金的延性损伤模型和纤维的最大应力失效模型,建立了基于内聚力界面模型的细观力学有限元模型并结合试验结果验证了其可靠性,在此基础上分析了纤维含量对复合材料横向拉伸损伤演化与力学行为的影响。结果表明,基于正六边形纤维排布RVE建立的细观力学模型能够准确预测复合材料横向拉伸力学性能。横向拉伸过程中首先发生界面损伤,随应变增加界面损伤累积,引起局部界面失效并诱发附近基体合金的损伤与失效,最终导致复合材料横向开裂,拉伸断口呈现界面脱粘和基体合金撕裂共存的微观形貌。提高纤维含量增加了界面数量和面积,从而降低了复合材料横向拉伸弹性模量和极限强度。  相似文献   

13.
应力特性对冲击磨损机理的影响   总被引:7,自引:4,他引:3  
在固定正应力磨损条件下研究了切应力对材料表面失效和裂纹萌生位置的影响。试验结果表明,随着冲击角度从90°到45°(τ/σ增加)的变化,亚表层最大剪切应力增加,其位置从亚表层向表面迅速转移。τ/σ的变化不仅影响裂纹萌生及扩展的速度,而且影响裂纹萌生的位置。对冲击磨损表面的微观形貌、失效方式分析表明,随着冲击角度的变化冲击磨损机理表现为两种失效方式,即剥落和微观切削。  相似文献   

14.
吴金波  孙奇  江晓禹 《表面技术》2024,53(7):171-179
目的 在单轴拉伸载荷下,用理论方法求解弹性涂层中裂纹的力学性质和相互影响。方法 根据叠加原理,将问题分为2个子问题,使用分布位错原理求解裂纹问题,将裂纹建模为沿裂纹线分布的位错阵列,叠加后使用数值求解方法进行求解。结果 得到了不同涂层模量、不同裂纹长度下表面裂纹尖端的应力强度因子(SIF)和涂层界面应力。涂层与基底模量相差越大,表面裂纹越长,其界面应力越大。计算了不同方位下的微裂纹对表面裂纹的影响,给出了60°倾角微裂纹、2l/h=0.2和2l/h=0.04表面裂纹以及2a/h=0.01和2a/h=0.018表面裂纹的影响区域。分析了涂层内部倾斜裂纹对表面裂纹应力强度因子和扩展角的影响。内部倾斜裂纹尖端对表面裂纹尖端的等效应力强度因子(ESIF)有增强作用,两侧有减弱作用。结论 较硬涂层对表面裂纹的扩展有增强作用,裂纹越长,受涂层模量对其应力强度因子的影响越大。微裂纹对表面裂纹的影响跟微裂纹位置、方向、长度和表面裂纹长度有关。表面裂纹附近的倾斜裂纹对表面裂纹的扩展具有吸引作用。  相似文献   

15.
研究了波动频率对X70管线钢焊接接头在阴极电位下的近中性介质中慢应变速率应力腐蚀开裂(SCC)行为.结果表明,X70钢在波动:拉伸载荷和阴极电位(-850 mVSCE)条件下,存在着一定的SCC敏感性.在波动拉伸载荷试验(F-SSRT)情况下,SCC裂纹的扩展机理与匀速慢拉伸试验(SSRT)时的裂纹扩展机理明显不同,SCC裂纹可以从材料表面产生的微孔处萌生并沿主应力面扩展,当载荷波动频率增大到一定程度时,SCC裂纹转变为沿45°最大剪应力面扩展.X70管线钢焊接接头阴极电位下近中性介质中SCC敏感部位为过热区.同时分析了氢在F.SSRT试样SCC过程中的作用和机理.  相似文献   

16.
将三点弯曲断裂力学试验与有限元分析(FEA)结合起来计算LX88A涂层与Q345钢界面裂纹的复应力强度因子.结果表明,对于三点弯曲试样,当发生界面断裂的临界载荷较小时,涂层试样的界面裂纹尖端附近存在K控制区,但K因子随临界载荷的增大,K因子控制区消失,发生失效的现象.对于三点弯曲试样,当临界载荷超过一定值时,线弹性断裂力学已经不能描述界面裂纹尖端场.因此,在后续研究中有必要使用弹塑性断裂力学和概率断裂力学对此类界面裂纹进行分析.  相似文献   

17.
采用实验和数值方法研究了陶瓷层厚度比对La2Ce2O7/YSZ(LC/YSZ)热障涂层热震性能的影响。实验结果表明,随着LC与YSZ厚度比的降低,涂层热震寿命显著提高,涂层失效区域逐渐向试样中心转移,剥离位置逐渐从两陶瓷层界面附近转移到LC内靠近上表面处。数值结果表明,界面边缘处较大的轴向应力与剪切应力易导致较大厚度比涂层边缘处剥落;LC表面中心区域较大的径向拉应力会导致垂直裂纹萌生,并伴随界面偏折,这是较小厚度比涂层自LC内部剥离的原因。  相似文献   

18.
研究镀铬锆合金(Zr-4)的拉伸失效行为。通过对拉伸过程的实时观察,研究涂层厚度对界面附着力的影响。使用有限元分析和剪切强度理论定量评估Cr涂层的界面附着力。此外,还研究镀铬样品的裂纹扩展行为。结果表明,随着涂层厚度的增加,界面剪切强度和界面黏附性能下降。然而,对基材的保护作用随着涂层厚度的增加而增加。此外,涂层与基体界面处裂纹扩展的路径也随着涂层厚度的增加而变化。较薄涂层界面处的裂纹很容易扩展到基体中,造成局部损伤。较厚涂层的裂纹更容易沿界面扩展,导致黏合剂失效。  相似文献   

19.
目的研究再制造件涂层内部不同形状、尺寸的裂纹扩展行为。方法利用扩展有限元和内聚力单元结合的方法,通过设定断裂能G值作为控制裂纹扩展的参数,对三点弯曲试验以及拉伸试验下涂覆层内部的裂纹进行模拟,并通过实验进行验证。结果随着载荷的增加,涂层中的垂直裂纹和45°倾斜裂纹均沿着涂层厚度方向扩展,到达界面时裂纹发生偏转,沿着界面继续扩展而并没有越过涂层-基体界面向基体扩展。模拟得到三点弯曲试验下初始长度为0.2 mm的垂直裂纹和45°倾斜裂纹开裂的临界载荷分别为3.47 k N和4.49 k N,裂纹长度增加至0.3 mm时,临界载荷降低为3.29 k N和4.31 k N。裂纹越靠近试件中心,临界载荷越小,越易发生裂纹扩展现象。另一方面,在拉伸试验下,0.2 mm的垂直裂纹的临界开裂载荷(3.47 k N)小于投影长度相同的倾斜裂纹的临界载荷(5.21 k N),而与拉应力平行的裂纹并未扩展。实验得到0.2 mm的垂直裂纹在弯曲试验下的平均临界载荷为3.49 k N,而倾斜裂纹为4.46 k N。结论三点弯曲试验下,垂直裂纹比倾斜裂纹更危险,初始长度越长、越靠近试件中心的裂纹越易发生裂纹扩展现象。在拉伸试验下,与拉应力平行的裂纹并未扩展,最安全。模拟结果与实验相近,验证了模拟的正确性。  相似文献   

20.
本文用等离子化学气相沉积法在GCr15钢基体上沉积TiN进行了室温耐磨性研究。结果表明:涂层复合材料具有低的摩擦系数,使得耐磨性提高。本文还从微观分析讨论了涂层的磨损机理,表明涂层失效是在切应力作用下引起微凸处的粒子剥离而使其附近受力,并在表面处产生裂纹,此裂纹沿“岛状”界面及粒子边界扩展而使之剥离。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号