首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
针对大型实对称正定矩阵的Cholesky分解问题,给出其在图形处理器(GPU)上的具体实现。详细分析了Volkov计算Cholesky分解的混合并行算法,并在此基础上依据自身计算机的CPU以及GPU的计算性能,给出一种更为合理的三阶段混合调度方案,进一步减少CPU的空闲时间以及避免GPU空闲情况的出现。数值实验表明,当矩阵阶数超过7000时,新的混合调度算法相比标准的MKL算法获得了超过5倍的加速比,同时对比原Volkov混合算法获得了显著的性能提升。  相似文献   

2.
不完全 Cholesky 分解预条件共轭梯度(incomplete Cholesky factorization preconditioned conjugate gradient ,ICCG)法是求解大规模稀疏对称正定线性方程组的有效方法。然而ICCG法要求在每次迭代中求解2个稀疏三角方程组,稀疏三角方程组求解固有的串行性成为了ICCG法在GPU上并行求解的瓶颈。针对稀疏三角方程组求解,给出了一种利用GPU 加速的有效方法。为了增加稀疏三角方程组求解在GPU上的多线程并行性,提出了对不完全Cholesky分解产生的稀疏三角矩阵进行分层调度(level scheduling )的方法。为了进一步提高稀疏三角方程组求解的并行性能,提出了在分层调度前通过近似最小度(approximate minimum degree ,AMD)算法对系数矩阵进行重排序、在分层调度后对稀疏三角矩阵进行层排序的方法,降低了分层调度过程中产生的层数,优化了稀疏三角方程组求解的GPU内存访问模式。数值实验表明,与利用NVIDIA CUSPARSE实现的ICCG法相比,采用上述方法性能可以获得平均1倍以上的提升。  相似文献   

3.
[目的]LDLT分解是求解很多稀疏对称线性系统的有效工具之一,尤其是对于迭代法难以收敛的问题.然而在GPU上实现LDLT分解存在困难,因为分解过程中存在数据依赖和不规则的数据访问.[方法]本文设计并实现了一个基于GPU的稀疏对称矩阵的LDLT分解,它采用Cholesky的符号分解和右视分解算法、稀疏矩阵依赖图的层次划分...  相似文献   

4.
针对基于GPU求解大规模稀疏线性方程组进行了研究,提出一种稀疏矩阵的分块存储格式HMEC(hybrid multiple ELL and CSR)。通过重排序优化系数矩阵的存储结构,将系数矩阵以一定的比例分块存储,采用ELL与CSR存储格式相结合的方式以适应不同的分块特征,分别使用适用于不对称矩阵的不完全LU分解预处理BICGStab法和对称正定矩阵的不完全Cholesky分解预处理共轭梯度法求解大规模稀疏线性系统。实验表明,应用HMEC格式存储稀疏矩阵并以调用GPU kernel的方式实现前述两种方法,与其他存储格式的实现方式作比较,最优可分别获得31.89%和17.50%的加速效果。  相似文献   

5.
王晞阳  陈继林  李猛  刘首文 《计算机工程》2022,48(7):199-205+213
在电力系统仿真中,大型稀疏矩阵的求解会消耗大量存储和计算资源,未有效利用矩阵的稀疏性将导致存储空间浪费以及计算效率低下的问题。当前关于稀疏矩阵求解算法的研究主要针对众核加速硬件,聚焦于挖掘层次集合的并行度以提升算法的并行效率,而在众核处理器架构上频繁地进行缓存判断及细粒度访问可能导致潜在的性能问题。针对基于现场可编程门阵列(FPGA)的下三角稀疏矩阵求解问题,在吴志勇等设计的FPGA稀疏矩阵求解器硬件结构的基础上,提出一种静态调度求解算法。通过对稀疏矩阵进行预处理,设计数据分布和指令排布流程,将下三角稀疏矩阵的求解过程静态映射到多个FPGA片上的处理单元,以实现下三角稀疏矩阵在FPGA上的并行高速求解。将串行算法中所有的隐式并行关系排布到缓冲中,使得所有计算单元都能实现计算、访存和单元间通信的高效并行,从而最大限度地利用FPGA的硬件资源。典型算例上的测试结果表明,相较传统的CPU/GPU求解算法,该算法能够实现5~10倍的加速效果。  相似文献   

6.
冯高锋 《计算机应用》2007,27(Z2):281-282
随着GPU的飞速发展,利用GPU进行图形计算之外的高性能计算已经成为一个研究热点.由此提出,将GPU作为协处理器,插入通用计算节点,构建GPU-CPU集群系统,使用相应的分块算法,把计算矩阵分块,然后采用:function offoad编程模型,将动态规划算法映射到CPU上进行加速计算.实验证明,利用该系统对动态规划算法进行优化,获得了很好的性能提高和加速比.  相似文献   

7.
为有效提高异构的CPU/GPU集群计算性能,提出一种支持异构集群的CPU与GPU协同计算的两级动态调度算法。根据各节点计算能力评测结果和任务请求动态分发数据,在节点内CPU和GPU之间动态调度任务,使用数据缓存和数据处理双队列机制,提高异构集群的传输和处理效率。该算法实现了集群各节点“能者多劳”,避免了单节点性能瓶颈造成的任务长尾现象。实验结果表明,该算法较传统MPI/GPU并行计算性能提高了11倍。  相似文献   

8.
宏基因组基因聚类是筛选致病基因的新型方法,其依赖于海量的测序数据、有效的聚类算法以及高效的计算机来实现。相关系数矩阵的计算是进行聚类前必须完成的操作,占总计算量的比重较大。以某基因库为例,包含1300个样本、每样本百万基因的数据,单线程运行需要27年。充分发挥多核CPU的潜力,利用GPU加速卡强大的计算能力,将程序扩展到多节点集群上运行,是重要而迫切的工作。在仔细分析算法的基础上,首先针对单CPU节点和单GPU卡做了高效实现,获得了接近理想的加速比;然后利用缓存优化进一步提升性能;最后使用负载均衡方法在MPI线程间分发计算任务,实现了良好的扩展。相比未优化的单线程程序,16节点CPU获得了238.8倍的加速,6 块GPU卡获得了263.8倍的加速。  相似文献   

9.
微分域网格变形方法能够较好的保持网格模型的局部细节特征,但其计算需要耗费较长的时间.结合GPU的高速并行运算性能,设计并实现了一种基于GPU的微分域网格变形算法.通过GPU进行网格的微分坐标求解、线性系统系数矩阵的Cholesky分解、线性系统求解等运算,从而将网格局部细节特征编码和解码过程以及变形结果的绘制完全通过GPU完成.实验结果表明该算法能够有效加速微分域网格变形方法的计算和绘制.  相似文献   

10.
苗旭鹏  王驭捷  沈佳  邵蓥侠  崔斌 《软件学报》2023,34(9):4407-4420
图神经网络由于其强大的表示能力和灵活性最近取得了广泛的关注. 随着图数据规模的增长和显存容量的限制, 基于传统的通用深度学习系统进行图神经网络训练已经难以满足要求, 无法充分发挥GPU设备的性能. 如何高效利用GPU硬件进行图神经网络的训练已经成为该领域重要的研究问题之一. 传统做法是基于稀疏矩阵乘法, 完成图神经网络中的计算过程, 当面对GPU显存容量限制时, 通过分布式矩阵乘法, 把计算任务分发到每个设备上, 这类方法的主要不足有: (1)稀疏矩阵乘法忽视了图数据本身的稀疏分布特性, 计算效率不高; (2)忽视了GPU本身的计算和访存特性, 无法充分利用GPU硬件. 为了提高训练效率, 现有一些研究通过图采样方法, 减少每轮迭代的计算带价和存储需求, 同时也可以支持灵活的分布式拓展, 但是由于采样随机性和方差, 它们往往会影响训练的模型精度. 为此, 提出了一套面向多GPU的高性能图神经网络训练框架, 为了保证模型精度, 基于全量图进行训练, 探索了不同的多GPU图神经网络切分方案, 研究了GPU上不同的图数据排布对图神经网络计算过程中GPU性能的影响, 并提出了稀疏块感知的GPU访存优化技术. 基于C++和CuDNN实现了该原型系统, 在4个不同的大规模GNN数据集上的实验表明: (1)通过图重排优化, 提高了GPU约40%的缓存命中率, 计算加速比可达2倍; (2)相比于现有系统DGL, 取得了5.8倍的整体加速比.  相似文献   

11.
广义稠密对称特征问题的求解是许多应用科学和工程的主要任务,并且是计算电磁学、电子结构、有限元模型和量子化学等计算中的重要部分。将广义对称特征问题转化为标准对称特征问题是求解广义稠密对称特征问题的关键计算步骤。针对GPU集群,文中给出了广义稠密对称特征问题标准化块算法在GPU集群上基于MPI+CUDA的实现。为了适应GPU集群的架构,广义对称特征问题标准化算法将正定矩阵的Cholesky分解与传统的广义特征问题标准化块算法相结合,降低了标准化算法中不必要的通信开销,并且增强了算法的并行性。在基于MPI+CUDA的标准化算法中,GPU与CPU之间的数据传输操作被用来掩盖GPU内的数据拷贝操作,这消除了拷贝所花费的时间,进而提高了程序的性能。同时,文中还给出了矩阵在二维通信网格中行通信域和列通信域之间完全并行的点对点的转置算法和基于MPI+CUDA的具有多个右端项的三角矩阵方程BX=A求解的并行块算法。在中科院计算机网络信息中心的超级计算机系统“元”上,每个计算节点配置2块Nvidia Tesla K20 GPGPU卡及2颗Intel E5-2680 V2处理器,使用多达32个GPU对不同规模矩阵的基于MPI+CUDA的广义对称特征问题标准化算法进行测试,取得了较好的加速效果与性能,并且具有良好的可扩展性。当使用32个GPU对50000×50000阶的矩阵进行测试时,峰值性能达到了约9.21 Tflops。  相似文献   

12.
研究基于GPU的有限元求解中的总刚矩阵生成和线性方程组求解问题.通过对单元着色和分组完成总刚矩阵的生成,并以行压缩存储(Compressed Sparse Row,CSR)格式存储,用预处理共轭梯度法求解所生成的大规模线性稀疏方程组.在CUDA(Compute Unified Device Architecture)平台上完成程序设计,并用GT430 GPU对弹性力学的平面问题和空间问题进行试验.结果表明,总刚矩阵生成和方程组求解分别得到最高11.7和8的计算加速比.  相似文献   

13.
基于稀疏表示的人脸识别方法   总被引:3,自引:1,他引:2  
分析了稀疏表示的数学本质就是稀疏正规化约束下的信号分解,研究了一种正交匹配追踪的稀疏表示算法并利用矩阵Cholesky分解简化迭代过程中矩阵求逆计算来快速实现算法,将该算法应用在人脸识别中,利用训练样本构建冗余字典,将测试样本看成冗余字典中训练样本的线性组合,通过在不同人脸库上的实验证明了该方法的有效性.  相似文献   

14.
袁良  张云泉  龙国平  王可  张先轶 《软件学报》2010,21(Z1):251-262
近年来在生物计算,科学计算等领域成功地应用了GPU 加速计算并获得了较高加速比.然而在GPU 上编程和调优过程非常繁琐,为此,研究人员提出了许多提高编程效率的编程模型和编译器,以及指导程序优化的计算模型,在一定程度上简化了GPU上的算法设计和优化,但是已有工作都存在一些不足.针对GPU低延迟高带宽的特性,提出了基于延迟隐藏因子的GPU 计算模型,模型提取算法隐藏延迟的能力,以指导算法优化.利用3 种矩阵乘算法进行实测与模型预测,实验结果表明,在简化模型的情况下,平均误差率为0.19.  相似文献   

15.
大尺度、高分辨率数字地形数据应用需求的增长,给计算密集型的累积汇流等数字地形分析算法带来了新的挑战。针对CPU/GPU(Graphics Processing Unit)异构计算平台的特点,提出了一种基于OpenCL(Open Computing Language)的多流向累积汇流算法的并行化策略,具有更好的平台独立性和可移植性,简化了CPU/GPU异构平台下的并行应用程序设计。累积汇流并行算法包括时空独立型的流量分配和空间依赖型的累积入流两个过程,均定义为OpenCL内核并交由OpenCL设备并行执行,其中累积入流过程借助流量转移矩阵由递归式转换为迭代式来实现并行计算。与基于流量转移矩阵的并行汇流算法相比,尽管基于单元入度矩阵的并行汇流算法可以降低迭代过程中的计算冗余,但需要采用具有较大延迟的原子操作以及需要更多的迭代次数,在有限的GPU计算资源下,两种算法性能差异不明显。实验结果表明,并行累积汇流算法在NVIDIA GeForce GT 650M GPU上获得了较好的加速比,加速性能随格网尺度增加而有所增加,其中流量分配获得了约50~70倍的加速比,累积入流获得了10~20倍的加速比,展示了利用OpenCL在GPU等并行计算设备上进行大规模数字地形分析的潜在优势。  相似文献   

16.
油藏数值模拟和很多其他科学计算问题一样需要求解大型稀疏线性代数方程组.在求解稀疏线性代数方程组的迭代法中,稀疏矩阵向量乘法(SpMV)是影响计算效率的核心函数之一.随着计算机硬件架构异构化,科学计算从单核、多核CPU计算架构逐渐发展到多核CPU+众核加速卡(GPU卡或MIC等)的计算架构.SpMV的实现效率与稀疏矩阵的存储格式及硬件架构关系密切.本文针对油藏模拟中常见的Jacobian矩阵的稀疏模式,利用GPU核心的合并访问和并发计算等特点,结合油藏模拟线性解法器的算法要求,设计了一种BHYB矩阵存储格式及其对应的线程组并行策略.数值实验测得基于该存储格式的SpMV相对串行BCSR格式的SpMV的加速比可达19倍,比cuSPARSE库中效率最高的HYB格式的SpMV快30%到80%.此外,本文所提出的BHYB存储格式对块状矩阵在GPU上的存储以及线程组并行策略对其它GPU并行程序中内核函数的设计和优化能起到一定的借鉴作用.  相似文献   

17.
大规模稀疏矩阵的主特征向量计算优化方法   总被引:1,自引:0,他引:1  
矩阵主特征向量(principal eigenvectors computing,PEC)的求解是科学与工程计算中的一个重要问题。随着图形处理单元通用计算(general-purpose computing on graphics pro cessing unit,GPGPU)的兴起,利用GPU来优化大规模稀疏矩阵的图形处理单元求解得到了广泛关注。分别从应用特征和GPU体系结构特征两方面分析了PEC运算的性能瓶颈,提出了一种面向GPU的稀疏矩阵存储格式——GPU-ELL和一个针对GPU的线程优化映射策略,并设计了相应的PEC优化执行算法。在ATI HD Radeon5850上的实验结果表明,相对于传统CPU,该方案获得了最多200倍左右的加速,相对于已有GPU上的实现,也获得了2倍的加速。  相似文献   

18.
沈雁  戴瑜兴 《计算机工程》2019,45(2):284-289
在OpenCL并行计算框架的clMAGMA库中,Cholesky分解算法采用大尺寸分块并行方法,不能充分利用GPU的高速局部存储器,且在计算过程中存在多次GPU-CPU间的数据传递。为此,提出采用小尺寸分块并行方法,充分利用GPU中的高速局部存储器,使矩阵子块的逆矩阵得到复用,完成对称正定矩阵的高效Cholesky分解,并且其能够应用于三维视觉光束平差问题中的大型正定矩阵的分解。实验结果表明,该方法的Cholesky分解速度比clMAGMA提升50%以上,针对光束平差问题,比Ceres Solver中使用的Eigen库速度提升约38倍。  相似文献   

19.
韩琪  蔡勇 《计算机仿真》2015,32(4):221-226,304
针对进行大规模拓扑优化问题计算量庞大且计算效率低的问题,设计并实现了一种基于图形处理器(GPU)的并行拓扑优化方法.采用双向渐进结构拓扑优化(BESO)为基础优化算法,采用一种基于节点计算的共轭梯度求解方法用于有限元方程组求解.通过对原串行算法的研究,并结合GPU的计算特点,实现了迭代过程全流程的并行计算.上述方法的程序设计和编写采用统一计算架构(CUDA),提出了基于单元和基于节点的两种并行策略.编写程序时充分使用CUDA自带的各种数学运算库,保证了程序的稳定性和易用性.数值算例证明,并行计算方法稳定并且高效,在优化结果一致的前提下,采用GTX580显卡可以取得巨大的计算加速比.  相似文献   

20.
为了解决模式识别中的计算效率问题,文章研究GPU的体系架构,采用基于GPU的并行计算方法,针对人脸识别算法在GPU上做了相关实验,获得了较高的计算加速比,得到了采用基于GPU的并行计算方法可以较好解决在模式识别中的计算瓶颈问题的结论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号