首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 402 毫秒
1.
高燃速推进剂研制现状分析   总被引:3,自引:0,他引:3  
对高燃速固体推进剂研制采用的技术途径进行了分析,归纳出了六类提高推进剂燃速的方法,包括燃烧催化剂法、增加热传导法、采用纳米微粉或超细固体粒子法、新型含能材料法、金属粉/氧化剂复合粒子法和基于对流燃烧机理的方法。找出了在高燃速推进剂达到的燃速水平、提高燃速所采用的技术途径方面存在的差距,指出基于对流燃烧机理的快燃物方法具有对推进剂配方能量影响小、燃速提高幅度大、适应性广等优点,具有广阔的应用前景。  相似文献   

2.
含硼富燃料推进剂各组分对其低压燃速的影响   总被引:14,自引:0,他引:14  
采用推进剂静态燃速测试仪和氧弹式量热器的试验方法,研究了各组分对含硼富燃料推进剂低压燃速和爆热的影响。结果表明:增加高氯酸铵(AP)含量、添加燃速催化剂、增加超细AP的含量,可以提高该推进剂的低压燃速;硼含量的增加可以提高推进剂的爆热,但燃速略有降低。热分析的结果表明:增加含硼富燃料推进剂的凝相放热是提高其低压燃速的主要原因。  相似文献   

3.
降低推进剂的燃速温度敏感度对于改进发动机的性能有非常重要的实际意义。对双基推进剂引入催化剂和降速剂能够在提高或降低燃速、使压力指数下降或保持不变的同时,明显降低燃速温度感度系数及其对压力的依赖关系。这是推进剂凝聚相反应机制发生变化造成的。  相似文献   

4.
通过添加快燃物ACP来提高硝胺改性双基推进剂的燃速,得到了ACP影响推进剂燃速的一般规律推进剂的燃速随ACP的含量和粒度的增大而增大.在简化数学模型的基础上,推导出ACP的使用粒径与推进剂燃速的关联不等式.  相似文献   

5.
采用燃速测试、微热电偶技术、燃烧火焰结构照像等试验方法,研究了含Eo的NEPE推进剂的高压燃烧性能.结果表明,推进剂中添加Eo可改善推进剂的高压燃烧性能,含Eo的推进剂在低压下的燃速较高,在高压下的燃速较低,并且随压强的上升,燃速压强指数降低.  相似文献   

6.
本文以低燃速丁羟推进剂为例,介绍了大型实用发动机推进剂燃速的评估技术。其主要内容是:通过选择小型评定发动机的燃速,确定大型实用发动机装药配方的氧化剂级配,来控制大型实用发动机推进剂的燃速;通过引入萨默菲尔德(summerfield)燃速公式,借助大、小发动机推进剂燃速的关系式,试计算并评定大型实用发动机设计压力(压强)下的推进剂燃速。  相似文献   

7.
秦能  张超  王明星 《含能材料》2010,18(1):110-114
为研究燃速与燃烧波特征量之间的相关性,采用在推进剂内埋设微型热电偶技术,测得了低燃速低燃温双基推进剂的燃烧波结构,并通过数据处理获得了燃烧波的特征量值,包括表面温度、火焰温度、暗区厚度、凝聚相温度梯度和气相嘶嘶区温度梯度。不含催化剂的基础配方燃速随表面温度增大而增大;加入催化剂的配方产生麦撒燃烧,表面温度比基础配方的表面温度有所增加,燃速与表面温度不再是单一的线性关系。火焰温度随压强增大而提高,其与燃速没有明显相关性。结果表明:低燃速低燃温双基推进剂的燃速与燃烧波特征量之间不仅存在线性关系,还存在非线性关系。分析认为是催化剂改变了低燃速低燃温推进剂的燃烧波结构所致。  相似文献   

8.
提出了用参数辨识和一台动态燃速实验发动机确定推进剂动态燃速的方法,用该方法对气象探测火箭固体推进剂燃速特性进行了实验测定和计算,该方法有效降低了实验成本和周期,可推广应用于其它类型发动机的研制。  相似文献   

9.
纳米铝粉在固体推进剂中的应用研究   总被引:1,自引:0,他引:1  
高东磊  朱慧  张炜  刘香翠 《含能材料》2004,12(Z1):154-156
采用与常规铝粉相比较的方法,考察了不同类型纳米铝粉的活性铝含量与燃烧热值,并对含纳米铝粉推进剂的燃烧性能、能量性能进行了测定.结果表明,纳米铝粉自身的能量性能要劣于常规铝粉,亦不能改善推进剂的能量性能,但纳米铝粉有利于提高推进剂的燃速,并降低燃速压强指数.  相似文献   

10.
宋洪昌  王祎  白华萍 《含能材料》2004,12(Z1):390-395
在原有的RDX-CMDB推进剂稳态燃烧化学--数学模型基础上,通过对铝粉燃烧机理的研究及大量燃速数据的分析,采用归纳因子的方法寻求铝粉的含量和粒度对燃速的影响因子,建立了Al-RDX-CMDB推进剂燃速计算公式.运用该公式可从化学结构出发,计算Al-RDX-CMDB推进剂的燃速和压强指数.通过实际计算表明,理论燃速值与实测值十分一致.由此讨论了影响平台推进剂燃速与燃速压强指数的化学结构因素.  相似文献   

11.
燃速催化剂是固体推进剂的必备部分,用来调节弹道性能,提高燃烧性能,为增加推进剂的能量水平、降低特征信号,利用纳米技术提高燃速催化剂的催化效率并减少其用量是近年来燃速催化剂领域的主要研究方向之一。综述了近年来纳米燃速催化剂在制备方法及应用方面的研究进展,指出存在的问题和改进措施,并对其应用前景进行展望。  相似文献   

12.
高能无烟改性双基推进剂中高压燃烧性能   总被引:1,自引:0,他引:1  
研究了含铅盐、铜盐、炭黑等催化剂的高能无烟改性双基推进剂在中高压下(10~43MPa)的燃烧性能。结果表明,在高压下推进剂的燃速随压强的升高而大幅升高;在25MPa高能无烟改性双基推进剂燃速曲线出现拐点,燃速随压强升高而大幅提高;10~25MPa范围内燃速催化剂对推进剂的燃烧性能有明显影响,NI-Pb/NI-Cu/CB将推进剂燃速提高75.16%(10MPa),而在25~43MPa范围内燃速催化剂对推进剂燃烧性能的影响明显减弱。  相似文献   

13.
为了解复合底排推进剂中AP氧化剂的含量及AP颗粒的大小对推进剂表观燃速的影响,利用一种综合燃烧模型,通过对燃烧过程的简化,计算了AP氧化剂不同粒径尺寸对底排推进剂燃速的影响,并和实验结果进行了比较.在此基础上,对不同AP含量的底排推进剂燃速进行了预测计算.结果表明,AP含量越高,底排推进剂的燃速越大;AP颗粒尺寸与底排推进剂燃速是非线性、非单调变化的关系.当AP粒径小于150μm时,AP颗粒尺寸越大,推进剂燃速越低;但AP粒径等于200μm时的推进剂燃速略高于150μm时的燃速.  相似文献   

14.
用药条燃烧器研究了在双基推进剂药条中埋入金属线束提高推进剂燃速的效果。在实验范围内,埋入金属线束提高燃速的效果比埋入最佳直径单线的效果增加30%~40%,而压力指数与埋入单线时没有变化.实验证明,金属线占推进剂面积的比例即便很小也可得到很高的燃速,在5MPa压力下最大燃速可达约10cm/s。  相似文献   

15.
大量粗粒度AP和降速剂的添加很难实现低燃速丁羟推进剂高强度的技术要求。研究以静态燃速不高于5.1 mm/s(20℃,6.0 MPa)低燃速丁羟推进剂作为基础配方,通过优选HTPB规格、键合剂组合和添加新型扩链剂的方法提高推进剂力学特性。结果表明,采用新型扩链剂SX,使70℃推进剂的抗拉强度高于1.0 MPa,伸长率大于10%。  相似文献   

16.
实验研究了含铝AP/HTPB推进剂的配方,讨论了燃速及压力指数与配方参数的关系。结果表明,推进剂燃速随平均AP粒子直径的增大而降低,但在大直径范围,这种趋势减缓。液体二茂铁催化剂可提高50%的推进剂燃速,而固体氧化铁可提高22%。液体二茂铁催化剂能比固体氧化铁更有效地提高燃速。燃速与压力指数的实验结果同燃烧模型的理论计算结果进行了比较,预估结果与实验数据符合较好。  相似文献   

17.
固体推进剂燃速压力指数的理论分析   总被引:2,自引:0,他引:2       下载免费PDF全文
本文以固体推进剂燃速预估理论为基础,推导出了燃速压力指数公式。从推进剂的化学结构、燃烧过程的特征反应出发,分析、讨论了燃速压力指数的化学本质,为固体推进剂燃速压力指数的优化及设计提供了有关的理论依据。  相似文献   

18.
通过大量实验数据分析,发现复合推进剂的静态燃速与燃速催伦剂的含量及氧化剂的比表面成指数关系,其相关系数则与复合推进剂各组份含量有关,据此提出了一个适用HTPB/AP(RDX)/Al/GFP推进剂静态燃速顶估的经验公式。  相似文献   

19.
庞爱民  刘学 《含能材料》2019,27(11):961-966
为了降低丁羟高燃速推进剂机械感度,考察了液体二茂铁燃速催化剂(EMT)含量、氧化剂高氯酸铵(AP)粒径及配比等对丁羟高燃速推进剂机械感度的影响,并通过差示扫描-热重(DSC-TG)热分析研究了AP/EMT体系热分解特性与机械感度的相关性。结果表明,细AP含量增加或细AP粒径减小时,推进剂药浆的摩擦感度和撞击感度均呈增加趋势;EMT提高了AP的高温分解反应速率常数和分解热,是含EMT的高燃速推进剂机械感度升高的微观原因,降低EMT含量,可以降低推进剂的机械感度;胺盐类降感剂GZJ-01和导电态聚苯胺降感剂DBJ-01对降低丁羟高燃速推进剂的机械感度无协同效应;细AP包覆和采用铜盐燃速催化剂(GRCJ)取代EMT均可以降低丁羟高燃速推进剂的机械感度。  相似文献   

20.
研究了氧化剂粒度和含量变化对NEPE推进剂燃速和压力指数的影响。实验结果表明NEPE的燃烧行为类似于AP-HMX-CMDB推进剂。采用细粒度AP或进行粒度级配是改善NEPE燃烧性能,提高燃速,降低压力指数的重要措施。观察到HMX粒度变化对NEPE的燃速无明显作用。在配方中增加AP含量,也可起到提高燃速的作用,并且随着压力的不断增高,燃速增加的效果越明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号