首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
快速超塑性成形技术是将热冲压和超塑气胀成形集成复合的新型工艺,通过对该工艺过程研究以及对复合工模具的优化设计,采用商用供货态工业铝合金5083板材成形出了某型号乘用车的引擎盖。结果表明,这种集成复合的快速超塑性成形技术工艺先进,切实可行。  相似文献   

2.
Computational process models using membrane element method are developed in this paper for the superplastic forming of plane strain boxes with complex cross-sectional details. Many practical superplastic components manufactured in industry have sloping sidewalk with die bottoms either corrugated and/or at angles to the sides. The new method is used to develop process models for such configurations and the resulting software can be used interactively in a computer. The method is useful to a designer in the parametric study of die geometry, die wall friction, initial thickness, and material property, or to determine if a specific geometry is suitable for superplastic forming. The kinematics of deformation are illustrated, and the numerical results of the model are compared with continuum finite element solutions and also with experimental data.  相似文献   

3.
回顾了王仲仁教授在超塑性研究领域的一系列重要研究成果。Sn-Pb共晶超塑性材料薄壁管复合加载实验表明,在复杂应力状态下超塑材料遵守Mises屈服准则,并与Tresca屈服准则也接近,给出了超塑材料在应变速率强化条件下的屈服轨迹;研究了超塑变形过程中晶粒和孔洞的长大规律及其对变形中流动应力的影响,导出了包含晶粒长大和孔洞长大影响的超塑性本构关系;提出了测定超塑材料摩擦系数的理论校准曲线和应变速率敏感性指数的变截面拉伸试验法;开发了带有动凸模的微机控制的1000kN超塑成形机,研制了当时国内最大的微机控制的5000kN超塑成形机;在模具型腔超塑成形研究方面,成功挤压了130型汽车连杆锻模,是迄今为止尺寸最大的超塑成形模具钢型腔。  相似文献   

4.
铝合金超塑性气胀成形壁厚分布工艺研究   总被引:2,自引:0,他引:2  
应用MARC软件对铝合金的超塑性胀形进行仿真,分析正反向和正向超塑胀形对成形件壁厚分布以及不同变形量对胀形结果的影响,比较了2种不同胀形方式对成形件壁厚分布和成形极限的影响。结果表明,采用合理的正反胀形可以很好地改善成形件的厚度不均匀性并大大提高成形极限,实验验证了仿真和实验结果相吻合。  相似文献   

5.
Material properties have powerful impact on the tube hydroforming (THF) process and the quality of the deformed tube, so it is important to select proper materials and evaluate the material formability prior to conducting the process. A simplified and applied tooling, which has no use for any external hydraulic pressure source but internal one, was designed for charactering the material formability in THF. A pressurized-fluid supplier is automatically established to provide the internal pressure and axial load synchronously required for THF, and the ratio of the two loads is achieved by proper design of the supplier. As a stand-alone hydraulic bulging fixture, the tooling can be worked on a conventional press, even on a single action press. Free bulge forming (FBF), bulge forming with axial loading (BFAL), free and restrained bulge forming (free and fixed ends) can be fulfilled by the tooling, and furthermore, bulge forming with proportional loading to some extend can be realized. Comparative bulge forming experiments under various forming conditions were carried out with the tooling to validate this project and the results suggest that restrained conditions on the tube ends highly affect the FBF, while the ratio of the two loads dominates the BFAL.  相似文献   

6.
多向加载近净成形研究动态   总被引:1,自引:0,他引:1  
通过主动控制不同方向、不同成形阶段的多向加载条件并配合模具、变形温度等成形条件,可有效控制变形,提高坯料的成形性能,以获得预期的结构形状及组织状态的零件,实现净成形或近净成形,为难变形材料的复杂整体构件的精确塑性成形提供了一条有效途径。多向加载技术在蒙皮拉形、管材挤胀、环件径轴向辗扩、多向模锻等塑性成形工艺中都得到体现,但其工艺通用性差,需要专门的设备,不同成形工艺甚至当成形零件不同时,其变形机理亦迥异。评述了目前多向加栽成形工艺的应用与国内外研究现状,指出了该工艺在体积成形中应用发展需要解决的关键技术问题。  相似文献   

7.
Quick plastic forming (QPF) was developed as a high-volume, hot blow forming process for automobile components, enabling larger volume applications than traditional superplastic forming (SPF). One critical aspect of the process is the tribological interaction between the forming tool and the aluminum blank, as this impacts formability, surface quality, and tool durability. While QPF has been successfully implemented for automobile components, many opportunities exist for improving the tribological condition during the process, including the die coating or treatment, the lubricant, and the fundamental understanding of aluminum/iron adhesion under QPF conditions (450 °C). This work reviews key tribological issues affecting QPF and identifies areas where additional research is required. This paper was presented at the International Symposium on Superplasticity and Superplastic Forming, sponsored by the Manufacturing Critical Sector at the ASM International AeroMat 2004 Conference and Exposition, June 8–9, 2004, in Seattle, WA. The symposium was organized by Daniel G. Sanders, The Boeing Company.  相似文献   

8.
In this work, the effect of the laser-material interaction on the formability of a superplastic aluminum alloy was investigated. In applications such as Tailor-Welded Blanks and in the manufacturing of very large components with a complex shape, laser welding combined with superplastic forming may be a very fitting industrial tool. Bead on plate tests were carried out in order to simulate the laser-welding process and then, free inflation tests were performed to evaluate the compatibility of these two processing techniques. The Al-Mg alloy used in this work has a very small grain size which ensures the superplastic behavior. With the aim of preserving this peculiarity, the following aspects on the formability were investigated: (i) the surface condition of the bead before the forming test (with and without the removal of the excess of metal); (ii) the effect of the travel speed of the laser source on the mean grain size; (iii) the introduction of a refiner, commonly used in aluminum casts, in the molten pool in order to further reduce the mean grain size.  相似文献   

9.
Evaluation of the superplastic formability of SP-inconel 718 superalloy   总被引:3,自引:0,他引:3  
The superplastic formability of SP- lnconel 718 superalloy was evaluated using the argon blowing method. Relationships among superplastic forming parameters (forming temperature, argon pressure, and forming time) and specific dome height (dome height/workpiece diameter) were investigated, as were changes in material properties after superplastic forming. Experimental results showed the optimum forming temperature range for SP- lnconel 718 to be between 975 and 995 °C. During the superplastic forming process, 5- phase precipitates formed at grain boundaries and limited the grain growth, which is considered beneficial for superplastic deformation. On the other hand, increasing the forming deformation also increased the formation of cavities, which can be attributed to the existence of niobium- rich inclusions. This degraded the superplasticity of the superalloy. Electrochemical tests showed that the corrosion resistance of SP- lnconel 718 after superplastic forming worsened because of the existence of both S- phase precipitates and niobium- rich inclusions.  相似文献   

10.
本文以曲线拟合方法,分析AZ31B-H24镁合金的单轴拉伸试验,针对材料在400℃温度下,应变率ε&=10-5-10-2 s-1范围之应力-应变关系曲线,找出一个以应变、应变率为函数的应力流方程式之本构模型,并将此模型掺入有限元(FEM)建构一合理的数值分析模式,仿真该单轴拉伸试验,以验证其可靠性。有限元分析(FEA)时以固体力学的弹-塑性理论来运算材料塑性流演化行为的应力增量-应变增量之关系。分析结果显示,FEA与单轴拉伸试验的应力-应变关系曲线,在各变形阶段上,二者皆具有相当不错的吻合性;且实验与FEA在极限应变状态下之杆件的变形形状,二者结果亦相当接近;本文并以此FEM分析模式预测固定速率之单轴拉伸案例,对该材料的吹制成型试验进行仿真,结果亦验证了本文所提出的本构模型拥有超塑性成型力学分析的实用性。本文对AZ31镁合金之超塑性力学分析提供了一个数值分析模式之参考。  相似文献   

11.
The goal of this work is to improve our understanding of formability enhancement in aluminum (Al) sheet alloys that has generally been observed during high-strain-rate forming. In the work presented here, experiments and numerical modeling were used to investigate the room-temperature formability of AA5182-O Al alloy sheet (1 mm thick) at high strain-rates using the electro-hydraulic forming (EHF) technique. A finite element model, using Johnson–Cook constitutive equation, was developed to simulate the high-rate forming behavior of Al under EHF and test samples were designed to obtain different strain paths at the apex of the EHF domes. The deformation history of Al sheets, under free-forming conditions and inside a conical die, was experimentally determined and compared to the model predictions. Experimental data shows that the high-rate formability of AA5182-O Al at minor strains of ∼−0.1 and ∼0.05, relative to its corresponding quasi-static formability, was enhanced locally by ∼2.5× and ∼6.5× under free-forming and when forming inside the conical die, respectively. The in-plane peak engineering strain-rate associated with the enhanced formability during free-forming was measured to be ∼3900/s while the pre-impact strain-rate during conical-die forming was estimated to be ∼4230/s. The strain-path associated with enhanced formability was experimentally determined under a free-forming case and was found to be in good agreement with that predicted by the numerical model. To the authors’ knowledge, these results are the first to experimentally quantify the deformation history associated with enhanced formability that has often been reported in the literature.  相似文献   

12.
In this paper, a mathematical model considering the anisotropic effects of the tubular material was proposed to examine the plastic deformation behavior of a thin-walled tube during bulge forming processes in an open die. In the formulation of this mathematical model, the forming tube is considered as an ellipsoidal surface. Non-uniform thinning in the free-bulged region and sticking friction between the tube and die are also considered. In this analytical model, Hill's orthogonal anisotropic theory was adopted for deriving the effective stress and effective strain under a bi-axial stress state. The effects of the anisotropic values on the forming pressure and maximum bulge height were discussed. Experiments of bulge forming using annealed A6011 aluminum tubes were conducted. The analytical results of forming pressure were compared with the finite element simulations and the experimental data. The validity of this newly proposed model was verified.  相似文献   

13.
带法兰锥形件的成形有两种方式:拉深和胀形,对其变形趋向性的准确判断是正确工艺过程设计的前题,本文对该零件的变形趋向性进行分析,指出了采用分步胀形工艺是唯一正确的技术方法,并介绍了胀形工艺参数的确定方法及模具设计。  相似文献   

14.
This work examined the effect of multiaxial stress on deformation characteristics of a superplastic aluminum alloy 8090 by deforming the sheet into a die with a cylindrical cavity. Several interrupted tests were performed to bulge the sheets to various depths for different strain rates, the formed parts were utilized to evaluate the deformation status, thickness distribution, local strain states, and cavitation. It was found that evolution of cavity volume fraction with forming time could be related to the thinning behavior of the deformed sheet during forming. Decrease in cavity volume fraction at the central region was observed in the later stage of forming as the thickness of the deformed sheet remained constant for all test forming rates.  相似文献   

15.
工业铝合金汽车覆盖件的超塑成形研究   总被引:4,自引:0,他引:4  
采用工业铝合金 5 1 82就一款汽车上的前挡泥板零件进行了超塑成形的试验研究。根据零件的形状特点确定使用超塑气压胀形工艺 ,并进行了模具型腔曲面设计和模具结构设计。应用数值模拟的方法对型腔曲面设计进行了优化 ,使预测出成形零件所需的变形量处在材料的变形能力之内。最终的成形试验结果表明 ,成形工艺和模具设计合理可行。  相似文献   

16.
建立了转子屏蔽套真空热胀形过程的二维轴对称有限元模型。借助非线性有限元软件MSC.Marc的二次开发功能,将Hastelloy C-276合金的蠕变本构模型与真空热胀形过程的有限元模型相结合,模拟了转子屏蔽套的真空热胀形过程。计算了真空热胀形过程中转子屏蔽套和模具内部的瞬时温度场和径向位移场,预测了转子屏蔽套的胀形量。研究了模具厚度、保温时间和保温温度等工艺参数对转子屏蔽套真空热胀形胀形量的影响。开展了真空热胀形工艺实验,模拟结果与实验结果吻合较好。  相似文献   

17.
董佳 《模具制造》2020,(1):28-30
由于汽车造型有着各种突出的棱线,在拉伸模的冲压过程中,板料和上、下模的各个棱线接触,在型腔内部形成形状各异的密闭空间。如果在上下模闭合时,模具排气不通畅,密闭空间内的空气会对产品造成不可恢复的鼓包或凹坑,此缺陷严重影响了整车的外观品质。通过成形性分析,查看各个气腔的形成过程,并通过推理、计算空气在排气孔处的排气速度,从而得出在不产生面品缺陷时的排气孔所应有的数量及大小,使整车SE阶段及模具设计阶段有效预防,避免后期无法增加排气孔的尴尬情况。  相似文献   

18.
零件的局部成形在实际生产中应用较多,在零件的形状与材料确定时,其成形质量主要取决于成形工艺和模具结构。当零件的成形工艺性较差时,就要通过改进工艺和模具结构的方法来保证零件质量。本文介绍了空气罐封头压形工艺与模具结构的改进工艺,改进后的模具改善了成形缺陷,保证了零件质量。  相似文献   

19.
Overview of superplastic forming research at ford motor company   总被引:1,自引:0,他引:1  
In an effort to reduce vehicle weight, the automotive industry has switched to aluminum sheet for many closure panels. Although the application of aluminum is compatible with existing manufacturing processes and has attractive qualities such as low density, good mechanical properties, and high corrosion resistance, it has less room-temperature formability than steel. The expanded forming limits that are possible with superplastic forming can significantly improve the ability to manufacture complex shapes from materials with limited formability. Aluminum closure panels produced by superplastic forming have been used by Ford Motor Company for over a decade. However, applications have been limited to low-volume, specialty vehicles due to the relatively slow cycle time and the cost penalty associated with the specially processed sheet alloys. While there has been substantial research on the superplastic characteristics of aluminum alloys, the bulk of this work has focused on the development of aerospace alloys, which are often too costly and perhaps inappropriate for automotive applications. Additionally, there has been a limited amount of work done to develop the technologies required to support the higher production volumes of the automotive industry. This work presents an automotive perspective on superplastic forming and an overview of the research being performed at Ford Motor Company to increase the production volume so superplastic forming can be cost competitive with more traditional forming technologies. This paper was presented at the International Symposium on Superplasticity and Superplastic Forming, sponsored by the Manufacturing Critical Sector at the ASM International AeroMat 2004 Conference and Exposition, June 8–9, 2004, in Seattle, WA. The symposium was organized by Daniel G. Sanders, The Boeing Company.  相似文献   

20.
Electrohydraulic forming (EHF) is based upon the electro-hydraulic effect: a complex phenomenon related to the discharge of high voltage electrical current through a liquid. In EHF, electrical energy is stored in a bank of capacitors and is converted into the kinetic energy needed to form sheet metal by rapidly discharging that energy across a pair of electrodes submerged in a fluid. The objective of this paper is to report the results of formability testing of dual phase steels in EHF conditions and to provide an explanation of the observed formability improvement based on analysis of the experimental results and through the use of a modeling technique developed as part of this work for simulating the EHF process. Comparison of the maximum strains resulting from EHF into a conical die and a v-shape die to the maximum strains resulting from quasistatic LDH testing (limiting dome height) indicated that substantially higher strains can be accomplished in the EHF process. In order to obtain the maximum benefits of increased formability with EHF technology, it is necessary to get to the high strain rate regime and the accompanying high hydrostatic stresses in the sheet, which occurs mostly in the contact area between the blank and the die. If the blank decelerates and gets to quasistatic forming conditions before filling the die cavity completely, very limited improvement in formability can be anticipated. A numerical model of the EHF process has been developed, incorporating four distinct models that are integrated into one: (1) an electrical model of the discharge channel, (2) a model of the plasma channel, (3) a model for the liquid as a pressure-transmitting medium, and (4) a deformable sheet metal blank in contact with a rigid die. The relative improvement in plane strain formability in EHF conditions was between 63% and 190%, depending on the grade of dual phase steel. Numerical modeling showed that the peak strain rates occurring in EHF are approximately 20,000 units per second.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号