首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 761 毫秒
1.
AVHRR (Advanced Very High Resolution Radiometer) GIMMS (Global Inventory Modelling and Mapping Studies) NDVI (Normalized Difference vegetation Index) data is available from 1981 to present time. The global coverage 8 km resolution 15-day composite data set has been used for numerous local to global scale vegetation time series studies during recent years. Several aspects however potentially introduce noise in the NDVI data set due to the AVHRR sensor design and data processing. More recent NDVI data sets from both Terra MODIS and SPOT VGT data are considered an improvement over AVHRR and these products in theory provide a possibility to evaluate the accuracy of GIMMS NDVI time series trend analysis for the overlapping period of available data. In this study the accuracy of the GIMMS NDVI time series trend analysis is evaluated by comparison with the 1 km resolution Terra MODIS (MOD13A2) 16-day composite NDVI data, the SPOT Vegetation (VGT) 10-day composite (S10) NDVI data and in situ measurements of a test site in Dahra, Senegal. Linear least squares regression trend analysis on eight years of GIMMS annual average NDVI (2000-2007) has been compared to Terra MODIS (1 km and 8 km resampled) and SPOT VGT NDVI data 1 km (2000-2007). The three data products do not exhibit identical patterns of NDVI trends. SPOT VGT NDVI data are characterised by higher positive regression slopes over the 8-year period as compared to Terra MODIS and AVHRR GIMMS NDVI data, possibly caused by a change in channels 1 and 2 spectral response functions from SPOT VGT1 to SPOT VGT2 in 2003. Trend analysis of AVHRR GIMMS NDVI exhibits a regression slope range in better agreement with Terra MODIS NDVI for semi-arid areas. However, GIMMS NDVI shows a tendency towards higher positive regression slope values than Terra MODIS in more humid areas. Validation of the different NDVI data products against continuous in situ NDVI measurements for the period 2002-2007 in the semi-arid Senegal revealed a good agreement between in situ measurements and all satellite based NDVI products. Using Terra MODIS NDVI as a reference, it is concluded that AVHRR GIMMS coarse resolution NDVI data set is well-suited for long term vegetation studies of the Sahel-Sudanian areas receiving < 1000 mm rainfall, whereas interpretation of GIMMS NDVI trends in more humid areas of the Sudanian-Guinean zones should be done with certain reservations.  相似文献   

2.
Much effort has been made in recent years to improve the spectral and spatial resolution of satellite sensors to develop improved vegetation indices reflecting surface conditions. In this study satellite vegetation indices from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Advanced Very High Resolution Radiometer (AVHRR) are evaluated against two years of in situ measurements of vegetation indices in Senegal. The in situ measurements are obtained using four masts equipped with self‐registrating multispectral radiometers designed for the same wavelengths as the satellite sensor channels. In situ measurements of the MODIS Normalized Difference Vegetation Index (NDVI) and AVHRR NDVI are equally sensitive to vegetation; however, the MODIS NDVI is consistently higher than the AVHRR NDVI. The MODIS Enhanced Vegetation Index (EVI) proved more sensitive to dense vegetation than both AVHRR NDVI and MODIS NDVI. EVI and NDVI based on the MODIS 16‐day constrained view angle maximum value composite (CV‐MVC) product captured the seasonal dynamics of the field observations satisfactorily but a standard 16‐day MVC product estimated from the daily MODIS surface reflectance data without view angle constraints yielded higher correlations between the satellite indices and field measurements (R 2 values ranging from 0.74 to 0.98). The standard MVC regressions furthermore approach a 1?:?1 line with in situ measured values compared to the CV‐MVC regressions. The 16‐day MVC AVHRR data did not satisfactorily reflect the variation in the in situ data. Seasonal variation in the in situ measurements is captured reasonably with R 2 values of 0.75 in 2001 and 0.64 in 2002, but the dynamic range of the AVHRR satellite data is very low—about a third to a half of the values from in situ measurements. Consequently the in situ vegetation indices were emulated much better by the MODIS indices than by the AVHRR NDVI.  相似文献   

3.
The first year of Moderate Resolution Imaging Spectroradiometer (MODIS) data are compared with National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) data for derivation of biophysical variables in Senegal, West Africa. The dynamic range of the two MODIS vegetation indices (VIs)—the continuity vegetation index (CVI) and the enhanced vegetation index (EVI)—is generally much larger than for the NOAA AVHRR normalized difference vegetation index (NDVI) data, indicating the importance of the change in near-infrared wavelength configuration from the NOAA AVHRR sensor to the MODIS sensor. Senegal is characterized by a pronounced gradient in the vegetation density covering a range of agro-climatic zones from arid to humid and it is found that the MODIS CVI values saturate for high VI values while the EVI demonstrates improved sensitivity for high biomass. Compared to NOAA AVHRR the MODIS VIs generally correlate better to the MODIS fraction of absorbed photosynthetically active radiation (fAPAR) absorbed by vegetation canopies and the leaf area index (LAI; the one-sided green leaf area per unit ground area). CVI is found to correlate better to both fAPAR and LAI than is the case for EVI because of the larger dynamic range of the CVI data. This suggests that the problem of background contamination on VIs from soil is not as severe in Senegal as has been found in other semi-arid African areas.  相似文献   

4.
The relationship between AVHRR-derived normalized difference vegetation index (NDVI) values and those of future sensors is critical to continued long-term monitoring of land surface properties. The follow-on operational sensor to the AVHRR, the Visible/Infrared Imager/Radiometer Suite (VIIRS), will be very similar to the NASA Earth Observing System's Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. NDVI data derived from visible and near-infrared data acquired by the MODIS (Terra and Aqua platforms) and AVHRR (NOAA-16 and NOAA-17) sensors were compared over the same time periods and a variety of land cover classes within the conterminous United States. The results indicate that the 16-day composite NDVI values are quite similar over the composite intervals of 2002 and 2003, and linear relationships exist between the NDVI values from the various sensors. The composite AVHRR NDVI data included water and cloud masks and adjustments for water vapor as did the MODIS NDVI data. When analyzed over a variety of land cover types and composite intervals, the AVHRR derived NDVI data were associated with 89% or more of the variation in the MODIS NDVI values. The results suggest that it may be possible to successfully reprocess historical AVHRR data sets to provide continuity of NDVI products through future sensor systems.  相似文献   

5.
On the relationship of NDVI with leaf area index in a deciduous forest site   总被引:7,自引:0,他引:7  
Numerous studies have reported on the relationship between the normalized difference vegetation index (NDVI) and leaf area index (LAI), but the seasonal and annual variability of this relationship has been less explored. This paper reports a study of the NDVI-LAI relationship through the years from 1996 to 2001 at a deciduous forest site. Six years of LAI patterns from the forest were estimated using a radiative transfer model with input of above and below canopy measurements of global radiation, while NDVI data sets were retrieved from composite NDVI time series of various remote sensing sources, namely NOAA Advanced Very High Resolution Radiometer (AVHRR; 1996, 1997, 1998 and 2000), SPOT VEGETATION (1998-2001), and Terra MODIS (2001). Composite NDVI was first used to remove the residual noise based on an adjusted Fourier transform and to obtain the NDVI time-series for each day during each year.The results suggest that the NDVI-LAI relationship can vary both seasonally and inter-annually in tune with the variations in phenological development of the trees and in response to temporal variations of environmental conditions. Strong linear relationships are obtained during the leaf production and leaf senescence periods for all years, but the relationship is poor during periods of maximum LAI, apparently due to the saturation of NDVI at high values of LAI. The NDVI-LAI relationship was found to be poor (R2 varied from 0.39 to 0.46 for different sources of NDVI) when all the data were pooled across the years, apparently due to different leaf area development patterns in the different years. The relationship is also affected by background NDVI, but this could be minimized by applying relative NDVI.Comparisons between AVHRR and VEGETATION NDVI revealed that these two had good linear relationships (R2=0.74 for 1998 and 0.63 for 2000). However, VEGETATION NDVI data series had some unreasonably high values during beginning and end of each year period, which must be discarded before adjusted Fourier transform processing. MODIS NDVI had values greater than 0.62 through the entire year in 2001, however, MODIS NDVI still showed an “M-shaped” pattern as observed for VEGETATION NDVI in 2001. MODIS enhanced vegetation index (EVI) was the only index that exhibited a poor linear relationship with LAI during the leaf senescence period in year 2001. The results suggest that a relationship established between the LAI and NDVI in a particular year may not be applicable in other years, so attention must be paid to the temporal scale when applying NDVI-LAI relationships.  相似文献   

6.
The long term Advanced Very High Resolution Radiometer (AVHRR)‐Normalized Difference Vegetation Index (NDVI) record provides a critical historical perspective on vegetation dynamics necessary for global change research. Despite the proliferation of new sources of global, moderate resolution vegetation datasets, the remote sensing community is still struggling to create datasets derived from multiple sensors that allow the simultaneous use of spectral vegetation for time series analysis. To overcome the non‐stationary aspect of NDVI, we use an artificial neural network (ANN) to map the NDVI indices from AVHRR to those from MODIS using atmospheric, surface type and sensor‐specific inputs to account for the differences between the sensors. The NDVI dynamics and range of MODIS NDVI data at 1° is matched and extended through the AVHRR record. Four years of overlap between the two sensors is used to train a neural network to remove atmospheric and sensor specific effects on the AVHRR NDVI. In this paper, we present the resulting continuous dataset, its relationship to MODIS data, and a validation of the product.  相似文献   

7.
A vegetation index (VI) model for predicting evapotranspiration (ET) from data from the Moderate Resolution Imaging Spectrometer (MODIS) on the EOS-1 Terra satellite and ground meteorological data was developed for riparian vegetation along the Middle Rio Grande River in New Mexico. Ground ET measurements obtained from eddy covariance towers at four riparian sites were correlated with MODIS VIs, MODIS land surface temperatures (LSTs), and ground micrometeorological data over four years. Sites included two saltcedar (Tamarix ramosissima) and two Rio Grande cottonwood (Populus deltoides ssp. Wislizennii) dominated stands. The Enhanced Vegetation Index (EVI) was more closely correlated (r=0.76) with ET than the Normalized Difference Vegetation Index (NDVI; r=0.68) for ET data combined over sites and species. Air temperature (Ta) measured over the canopy from towers was the meteorological variable that was most closely correlated with ET (r=0.82). MODIS LST data at 1- and 5-km resolutions were too coarse to accurately measure the radiant surface temperature within the narrow riparian corridor; hence, energy balance methods for estimating ET using MODIS LSTs were not successful. On the other hand, a multivariate regression equation for predicting ET from EVI and Ta had an r2=0.82 across sites, species, and years. The equation was similar to VI-ET models developed for crop species. The finding that ET predictions did not require species-specific equations is significant, inasmuch as these are mixed vegetation zones that cannot be easily mapped at the species level.  相似文献   

8.
Multi-temporal vegetation index (VI) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) are becoming widely used for large-area crop classification. Most crop-mapping studies have applied enhanced vegetation index (EVI) data from MODIS instead of the more traditional normalized difference vegetation index (NDVI) data because of atmospheric and background corrections incorporated into EVI's calculation and the index's sensitivity over high biomass areas. However, the actual differences in the classification results using EVI versus NDVI have not been thoroughly explored. This study evaluated time-series MODIS 250-m EVI and NDVI for crop-related land use/land cover (LULC) classification in the US Central Great Plains. EVI- and NDVI-derived maps classifying general crop types, summer crop types and irrigated/non-irrigated crops were produced for southwest Kansas. Qualitative and quantitative assessments were conducted to determine the thematic accuracy of the maps and summarize their classification differences. For the three crop maps, MODIS EVI and NDVI data produced equivalent classification results. High thematic accuracies were achieved with both indices (generally ranging from 85% to 90%) and classified cropping patterns were consistent with those reported for the study area (> 0.95 correlation between the classified and USDA-reported crop areas). Differences in thematic accuracy (< 3% difference), spatially depicted patterns (> 90% pixel-level thematic agreement) and classified crop areas between the series of EVI- and NDVI-derived maps were negligible. Most thematic disagreements were restricted to single pixels or small clumps of pixels in transitional areas between cover types. Analysis of MODIS composite period usage in the classification models also revealed that both VIs performed equally well when periods from a specific growing season phase (green, peak or senescence) were heavily utilized to generate a specific crop map.  相似文献   

9.
Vegetation indices (VIs) such as the Normalized Difference Vegetation Index (NDVI) are widely used for assessing vegetation cover and condition. One of the NDVI's significant disadvantages is its sensitivity to aerosols in the atmosphere, hence several atmospherically resistant VIs were formulated using the difference in the radiance between the blue and the red spectral bands. The state‐of‐the‐art atmospherically resistant VI, which is a standard Moderate Resolution Imaging Spectroradiometer (MODIS) product, together with the NDVI, is the Enhanced Vegetation Index (EVI). A different approach introduced the Aerosol‐free Vegetation Index (AFRI) that is based on the correlation between the shortwave infrared (SWIR) and the visible red bands. The AFRI main advantage is in penetrating an opaque atmosphere influenced by biomass burning smoke, without the need for explicit correction for the aerosol effect. The objective of this research was to compare the performance of these three VIs under smoke conditions. The AFRI was applied to the 2.1 µm SWIR channel of the MODIS sensor onboard the Earth Observing System (EOS) Terra and Aqua satellites in order to assess its functionality on these imaging platforms. The AFRI performance was compared with those of NDVI and EVI. All VIs were calculated on images with and without present smoke, using the surface‐reflectance MODIS product, for three case studies of fires in Arizona, California, and Zambia. The MODIS Fire Product was embedded on the images in order to identify the exact location of the active fires. Although good correlations were observed between all VIs in the absence of smoke (in the Arizona case R 2 = 0.86, 0.77, 0.88 for the NDVI–EVI, AFRI–EVI, and AFRI–NDVI, respectively) under smoke conditions a high correlation was maintained between the NDVI and the EVI, while low correlations were found for the AFRI–EVI and AFRI–NDVI (0.21 and 0.16, for the Arizona case, respectively). A time series of MODIS images recorded over Zambia during the summer of 2000 was tested and showed high NDVI fluctuations during the study period due to oscillations in aerosol optical thickness values despite application of aerosol corrections on the images. In contrast, the AFRI showed smoother variations and managed to better assess the vegetation condition. It is concluded that, beneath the biomass burning smoke, the AFRI is more effective than the EVI in observing the vegetation conditions.  相似文献   

10.
Long term observations of global vegetation from multiple satellites require much effort to ensure continuity and compatibility due to differences in sensor characteristics and product generation algorithms. In this study, we focused on the bandpass filter differences and empirically investigated cross-sensor relationships of the normalized difference vegetation index (NDVI) and reflectance. The specific objectives were: 1) to understand the systematic trends in cross-sensor relationships of the NDVI and reflectance as a function of spectral bandpasses, 2) to examine/identify the relative importance of the spectral features (i.e., the green peak, red edge, and leaf liquid water absorption regions) in and the mechanism(s) of causing the observed systematic trends, and 3) to evaluate the performance of several empirical cross-calibration methods in modeling the observed systematic trends. A Level 1A Hyperion hyperspectral image acquired over a tropical forest—savanna transitional region in Brazil was processed to simulate atmospherically corrected reflectances and NDVI for various bandpasses, including Terra Moderate Resolution Imaging Spectroradiometer (MODIS), NOAA-14 Advanced Very High Resolution Radiometer (AVHRR), and Landsat-7 Enhanced Thematic Mapper Plus (ETM+). Data were extracted from various land cover types typically found in tropical forest and savanna biomes and used for analyses. Both NDVI and reflectance relationships among the sensors were neither linear nor unique and were found to exhibit complex patterns and bandpass dependencies. The reflectance relationships showed strong land cover dependencies. The NDVI relationships, in contrast, did not show land cover dependencies, but resulted in nonlinear forms. From sensitivity analyses, the green peak (∼550 nm) and red-NIR transitional (680-780 nm) features were identified as the key factors in producing the observed land cover dependencies and nonlinearity in cross-sensor relationships. In particular, differences in the extents to which the red and/or NIR bandpasses included these features significantly influenced the forms and degrees of nonlinearity in the relationships. Translation of MODIS NDVI to “AVHRR-like” NDVI using a weighted average of MODIS green and red bands performed very poorly, resulting in no reduction of overall discrepancy between MODIS and AVHRR NDVI. Cross-calibration of NDVI and reflectance using NDVI-based quadratic functions performed well, reducing their differences to ± .025 units for the NDVI and ± .01 units for the reflectances; however, many of the translation results suffered from bias errors. The present results suggest that distinct translation equations and coefficients need to be developed for every sensor pairs and that land cover-dependency need to be explicitly accounted for to reduce bias errors.  相似文献   

11.
Epiphylls - lichens, fungi, liverworts, etc. infesting leaf surfaces - are found throughout humid forests of the world. It is well understood that epiphylls inhibit light interception by host plants, but their effect on remote sensing of colonized forests has not been examined. Incorporating leaf-level spectra from Terra Firme (primary forest) and Amazonian Caatinga (woodlands/forest growing on nutrient-deficient sandy soils), we used the GeoSAIL model to propagate leaf-level measurements to the canopy level and determine their effect on commonly used vegetation indices. In Caatinga, moderate infestations (50% leaf area epiphyll cover), lowered simulated Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) values by 6.1% and 20.4%, respectively, largely due to near infrared dampening. Heavy infestation (100% cover) simulations exhibited decreases 1.5-2 times greater than those of moderate infestations. For Terra Firme, which are generally less affected by epiphylls, moderate (20% leaf area) and heavy infestations (40%) lowered EVI by 4.4% (S.D. 0.8%) and 8.1% (S.D. 1.5%), respectively. Near infrared and green reflectance were most affected at the canopy level, showing mean decreases of 10.6% (S.D. 2.25%) and 9.5% (S.D. 3.49%), respectively, in heavy Terra Firme infestations. Time series of Moderate Resolution Imaging Spectrometer (MODIS) data corroborated the modeling results, suggesting a degree of coupling between epiphyll cover and the EVI and NDVI. These results suggest that, without explicit consideration of the presence of epiphylls, remote sensing-based methodologies may underestimate leaf area index, biomass and productivity in humid forests.  相似文献   

12.
Northern Arizona ecosystems are particularly sensitive to plant-available moisture and have experienced a severe drought with considerable impacts on ecosystems from desert shrub and grasslands to pinyon-juniper and conifer forests. Long-term time-series from the Moderate Resolution Imaging Spectroradiometer (MODIS) normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI) are used to monitor recent regional vegetation activity and temporal patterns across various ecosystems. Surface air temperature, solar radiation and precipitation are used to represent meteorological anomalies and to investigate associated impacts on vegetation greenness. Vegetation index anomalies in the northern Arizona ecosystem have a decreasing trend with increasing surface air temperature and decreasing precipitation. MODIS NDVI and EVI anomalies are likely sensitive to the amount of rainfall for northern Arizona ecosystem conditions, whereas inter-annual variability of surface air temperature accounts for MODIS NDVI anomaly variation. The higher elevation area shows the slow vegetation recovery through trend analysis from MODIS vegetation indices for 2000–2011 within the study domain and along elevation.  相似文献   

13.
An assessment of the suitability of the Advanced Very High Resolution Radiometer (AVHRR) vegetation index to estimate land degradation in semi‐arid areas has been carried out, comparing its behaviour with that of vegetation indices based on Sea‐viewing Wide Field‐of‐view Sensor (SeaWiFS) images. Notwithstanding the importance of the classic Normalized Difference Vegetation Index (NDVI) indicator, based on red–NIR channels, several studies have identified some limitations related to its use, such as its dependence on the atmospheric profile, saturation problems, non‐linearity in biophysical coupling with Leaf Area Index (LAI) and canopy background contamination. The relatively recent Enhanced Vegetation Index (EVI) overcomes these limits, using the information related to the blue channel and a soil adjustment factor. SeaWiFS data allow the computation of both vegetation indices. On the other hand, the NDVI based on AVHRR can be computed back in time to the 1980s, allowing a sufficient time span to obtain information on the desertification trend of the considered region (northern Kenya). In conclusion, taking advantage of both datasets, the accuracy of a change detection technique based on the classic NDVI has been confirmed as suitable for revealing any desertification trend.  相似文献   

14.
Cross‐sensor inter‐comparison is important to assess calibration quality and consistency and ensure continuity of observational datasets. This study conducts an inter‐comparison of Terra and Aqua MODIS (the MODerate Resolution Imaging Spectroradiometer) to examine the overall calibration consistency of the reflective solar bands. Observations obtained from AVHRR (the Advanced Very High Resolution Radiometer) onboard the NOAA‐KLM series of satellites are used as a transfer radiometer to examine three MODIS bands at 0.65 (visible), 0.85 (near‐IR) and 1.64 µm (far near‐IR) that match spectrally with AVHRR channels. Coincident events are sampled at a frequency of about once per month with each containing at least 3000 pixel‐by‐pixel matched data points. Multiple AVHRR sensors on‐board NOAA‐15 to 18 satellites are used to check the repeatability of the Terra/Aqua MODIS inter‐comparison results. The same approach applied in previous studies is used with defined criteria to generate coincident and co‐located near nadir MODIS and AVHRR pixel pairs matched in footprint. Terra and Aqua MODIS to AVHRR reflectance ratios are derived from matched pixel pairs with the same AVHRR used as a transfer radiometer. The ratio differences between Terra and Aqua MODIS/AVHRR give an indication of the calibration biases between the two MODIS instruments. Effects due to pixel footprint mismatch, band spectral differences and surface and atmospheric bi‐directional reflectance distributions (BRDFs) are discussed. Trending results from 2002 to 2006 show that Terra and Aqua MODIS reflectances agree with each other within 2% for the three reflective solar bands.  相似文献   

15.
Vegetation indices have been widely used as indicators of seasonal and inter‐annual variations in vegetation caused by either human activities or climate, with the overall goal of observing and documenting changes in the Earth system. While existing satellite remote sensing systems, such as NASA's Multi‐angle Imaging SpectroRadiometer (MISR) and Moderate Resolution Imaging Spectroradiometer (MODIS), are providing improved vegetation index data products through correcting for the distortions in surface reflectance caused by atmospheric particles as well as ground covers below vegetation canopy, the impact of land‐cover mixing on vegetation indices has not been fully addressed. In this study, based on real image spectral samples for two‐component mixtures of forest and common nonforest land‐cover types directly extracted from a 1.1?km MISR image by referencing a 30?m land‐cover classification, the effect of land‐cover mixing on the Normalized Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI) has been quantitatively evaluated. When the areal fraction of forest was lower than 80%, both NDVI and EVI varied greatly with mixed land‐cover types, although EVI varied less than NDVI. Such a phenomenon can cause errors in applications based on use of these vegetation indices. This study suggests that methods that reduce land‐cover mixing effects should be introduced when developing new spectral vegetation indices.  相似文献   

16.
For the estimation of annual Gross Primary Productivity(GPP),it is proposed an estimation method with simple parameters and small errors.By taking each type of vegetation in the area of Three-North Shelterbelt Program(TNSP) as the research subject,the MODIS vegetation indices were obtained,and the seasonal variation curve of vegetation indices were built.Then,the fitting relation between the integral of time series vegetation indices(ΣVIs) and GPP products of MODIS was established,so as to realize a simple GPP estimation method and study the applicable ΣVIs for estimating the GPP of all vegetation types.The results show that:(1) ΣVIs is suitable for estimating the annual total GPP in research area and significantly correlated with MODIS GPP at the confidence level of p<0.01;(2) ΣEVI2 is applicable to estimate the GPP of evergreen needleleaf forest,decidious needleleaf forest,decidious broadleaf forest,mixed forest,woody savannas,savannas,permanent wetlands,croplands,croplands/natural vegetation mosaic,while the effect of ΣNDVI for estimating the GPP of closed shrublands,open shrublands,grasslands,croplands,and barren or sparsely vegetated is superior to ΣEVI andΣEVI2;(3) Since the NDVI itself is saturated in the area of high Leaf Area Index(LAI),the error of estimating the GPP of high LAI vegetation type by ΣNDVI is larger,while using ΣEVI and ΣEVI2 to estimate them has better accuracy,and the limitation from blue band of EVI2 reduces compared with EVI,which can be applied to the GPP research of long time series better.  相似文献   

17.
Time series of the vegetation index product MOD13Q1 from the Moderate Resolution Imagery Spectroradiometer (MODIS) were assessed for estimating tree foliage projective cover (FPC) and cover change from 2000 to 2006. The MOD13Q1 product consists of the enhanced vegetation index (EVI) and the normalized difference vegetation index (NDVI). There were four challenges in using the MOD13Q1 product to derive tree FPC: assessing the impact of the sensor's varying view geometry on the vegetation index values; decoupling tree and grass cover contributions to the vegetation index signal; devising a method to relate the temporally composited vegetation index pixels to Lidar estimates of tree FPC for calibration; and estimating the accuracy of the FPC and FPC change measurements using independently derived Lidar, Landsat and MODIS cover estimates. The results show that, for complex canopies, the varying view geometry influenced the vegetation indices. The EVI was more sensitive to the view angle than the NDVI, indicating that it is sensitive to vegetation structure. An existing time series method successfully extracted the evergreen vegetation index signal while simultaneously minimizing the impact of varying view geometry. The vegetation indices were better suited to monitoring tree cover change than deriving accurate single‐date estimates of cover at regional to continental scales. The EVI was more suited to monitoring change in high‐biomass regions (cover >50%) where the NDVI begins to saturate.  相似文献   

18.
In monsoon Asia, optical satellite remote sensing for rice paddy phenology suffers from atmospheric contaminations mainly due to frequent cloud cover. We evaluated the quality of satellite remote sensing of paddy phenology: (1) through continuous in situ observations of a paddy field in Japan for 1.5 years, we investigated phenological signals in the reflectance spectrum of the paddy field; (2) we tested daily satellite data taken by Terra/Aqua MODIS (MOD09 and L1B products) with regard to the agreement with the in situ data and the influence of cloud contamination. As a result, the in situ spectral characteristics evidently indicated some phenological changes in the rice paddy field, such as irrigation start, padding, heading, harvest and ploughing. The Enhanced Vegetation Index (EVI) was the best vegetation index in terms of agreement with the in situ data. More than 65% of MODIS observations were contaminated with clouds in this region. However, the combined use of Terra and Aqua decreased the rate of cloud contamination of the daily data to 43%. In conclusion, the most robust dataset for monitoring rice paddy phenology in monsoon Asia would be daily EVI derived from a combination of Terra/MODIS and Aqua/MODIS.  相似文献   

19.
Landscapes containing differing amounts of ecological disturbance provide an excellent opportunity to validate and better understand the emerging Moderate Resolution Imaging Spectrometer (MODIS) vegetation products. Four sites, including 1‐year post‐fire coniferous, 13‐year post‐fire deciduous, 24‐year post‐fire deciduous, and >100 year old post‐fire coniferous forests, were selected to serve as a post‐fire chronosequence in the central Siberian region of Krasnoyarsk (57.3°N, 91.6°E) with which to study the MODIS leaf area index (LAI) and vegetation index (VI) products. The collection 4 MODIS LAI product correctly represented the summer site phenologies, but significantly underestimated the LAI value of the >100 year old coniferous forest during the November to April time period. Landsat 7‐derived enhanced vegetation index (EVI) performed better than normalized difference vegetation index (NDVI) to separate the deciduous and conifer forests, and both indices contained significant correlation with field‐derived LAI values at coniferous forest sites (r 2 = 0.61 and r 2 = 0.69, respectively). The reduced simple ratio (RSR) markedly improved LAI prediction from satellite measurements (r 2 = 0.89) relative to NDVI and EVI. LAI estimates derived from ETM+ images were scaled up to evaluate the 1 km resolution MODIS LAI product; from this analysis MODIS LAI overestimated values in the low LAI deciduous forests (where LAI<5) and underestimated values in the high LAI conifer forests (where LAI>6). Our results indicate that further research on the MODIS LAI product is warranted to better understand and improve remote LAI quantification in disturbed forest landscapes over the course of the year.  相似文献   

20.
The bi-directional reflectance distribution function (BRDF) has been widely studied across different vegetation types. However, these studies generally report values for only one point in time. We were interested in the potential for seasonal and inter-annual variation in BRDF parameters. NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) sensor on board the EOS satellites has now been collecting data for 10 years. Since BRDF parameters are reported for the individual spectral bands, these data can be used to examine intra-annual variation. However, MODIS BRDF parameters are not calculated for the various vegetation indices which are derived from the spectral bands. Our objective in this study was to use the 10 years of MODIS data now available to examine seasonal and inter-annual variation in the view angle sensitivity of three vegetation indices; the normalized difference vegetation index (NDVI), the enhanced vegetation index (EVI), and the photochemical reflectance index (PRI) at 3 flux tower sites (Harvard Forest, Howland Forest and Morgan Monroe State Forest). For these 3 sites, only EVI was significantly affected by view angle. There was also a substantial variation in the view angle sensitivity of EVI across seasons and this variation was different for backscatter vs. forward scatter data. It is possible that differences in the scattering of radiation between the spring and the fall are responsible for the seasonal difference in view angle sensitivity. There were also complimentary variations in forward and backscatter view angle sensitivity of EVI across years. The greater view angle sensitivity of EVI, as opposed to NDVI, suggests that greater care must be taken to correct for BRDF effects when using this vegetation index.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号