首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
张影 《热固性树脂》2020,35(3):20-23
采用原位聚合法以脲醛树脂为壁材,E-51环氧树脂为芯材制备了微胶囊并将其加入E-51环氧树脂/1622T改性脂肪胺体系中。采用示差扫描量热法及力学性能测试研究了该体系的固化动力学及其他性能。结果表明:微胶囊质量分数为10%时,体系的凝胶温度、固化温度和后处理温度均降低,固化度提高。活化能达到极小值45.02 kJ/mol,较纯环氧体系降低18.91%。冲击强度达到极大值2.58 kJ/m2,较纯环氧树脂体系提高20.34%。微胶囊质量分数为5%时,拉伸强度和弯曲强度分别为67.1 MPa和86.2 MPa,较纯环氧树脂体系分别提高6.5%和10.51%。  相似文献   

2.
曹骏  李诚  范宏 《粘接》2014,(6):32-37,49
评价了3种有机硅多元胺APS、SFA和PSPA分别固化环氧树脂E51(DGEBA)时,固化物的力学性能和粘接强度,并与常见脂肪胺类固化剂[乙二胺、己二胺、聚醚胺(D-230)]作了对比。固化物基体力学和热性能测试表明,有机硅多元胺环氧固化物表现出较佳的冲击强度、弯曲强度和热稳定性。有机硅多元胺/环氧树脂胶粘剂的铁片粘接强度以及耐水性明显高于脂肪胺/环氧胶粘剂体系,其中含苯基有机硅多元胺作为固化剂时粘接强度最高,达到14.8 MPa。()  相似文献   

3.
低粘度酚醛改性胺环氧固化剂的性能研究   总被引:1,自引:0,他引:1  
采用非等温DSC法对自制的低粘度酚醛改性胺固化剂与环氧树脂的固化反应工艺参数进行了推导,并通过测试体系的固化度加以验证。固化物采用红外光谱进行了表征,同时测定了浇注体的力学性能、热性能(TG),并通过扫描电镜(SEM)对拉伸断裂面的表面形貌进行了观察。结果表明:环氧树脂E-51与自制固化剂的质量比为100∶35,固化工艺条件为常温/24 h+80℃/2 h时,体系力学性能最佳,拉伸强度55.2 MPa、弯曲强度92.8 MPa、压缩强度83.0 MPa,断裂伸长率2.2%,Tg达到280.3℃。该固化剂粘度低、耐热性好、具有很好的柔韧性,可用于建筑结构胶。  相似文献   

4.
以苯乙烯(St)、马来酸酐(MAh)及丙烯酸丁酯(BA)为原料合成了苯乙烯-马来酸酐-丙烯酸丁酯三元共聚物(SMB)并作为环氧树脂(E-51)韧性固化剂。测定了SMB的酸酐值;采用红外光谱对SMB及SMB/E-51固化物进行表征;通过热重分析考察了该SMB/E-51固化体系的热性能;比较了不同配比的SMB/E-51固化产物在150℃经过不同时间后的剪切强度;通过扫描电子显微镜对比了SMB与马来酸酐/苯乙烯共聚物(SMA)分别作为环氧树脂固化剂时所得的固化产物的冲击断面形貌。结果表明,该固化剂的酸酐值为0.356 mol/100 g。E-51/SMB固化产物具有良好的耐热性能,最大失重速率温度(Tmax)达430℃;当E-51/SMB的质量比为1/1.2时,固化产物表现出较佳的力学性能和热稳定性,在150℃下保温36 h后,对不锈钢的搭接剪切强度达到15.40 MPa,高于在相同条件和最佳配比下的E-51/SMA固化产物;且E-51/SMB固化体系的韧性也优于E-51/SMA固化体系。  相似文献   

5.
酚醛改性脂肪胺环氧树脂固化剂的性能研究   总被引:1,自引:0,他引:1  
马诗纬  王钧  段华军  杨青海 《粘接》2007,28(5):8-10
用酚醛改性脂肪胺(乙二胺、二乙烯三胺)与聚醚胺作为混合固化剂固化环氧树脂,研究了聚醚胺的用量对环氧树脂凝胶时间、冲击韧性以及粘接性能的影响;并通过测试钢-钢拉剪强度研究了此结构胶粘剂的耐湿热老化性能。实验结果表明,随着聚醚胺用量的增加,环氧树脂固化体系的凝胶时间增长,树脂浇铸体的冲击韧性明显提高,粘接强度先提高再降低,最高值达到16.2 MPa;随着湿热老化时间的增加,环氧树脂固化体系的粘接性能逐渐降低。  相似文献   

6.
分别以4,4‘-二氨基二苯甲烷(DDM)和4,4‘-二氨基二苯砜(DDS)为固化剂,采用非等温差示扫描量热法(DSC)研究了E-44和E-51两种双酚A型环氧树脂的固化反应动力学。收集与分析了在25~350℃范围内分别以5、10、15、20℃/min的升温速率进行固化的反应参数,然后采用Starink法计算得到不同环氧固化体系的表观活化能。同时,借助各固化体系的动态流变性能,分析了双酚A型环氧树脂/芳香胺固化体系的固化反应机理,并选用双参数自催化模型计算了各固化体系的反应速率方程。研究结果表明:当环氧固化体系的固化剂不同时,采用DDM作为固化剂的环氧固化体系(E-44/DDM、E-51/DDM),其表观活化能均低于添加DDS固化剂的环氧体系;选用同种固化剂(DDM或DDS)时,E-51树脂体系的表观活化能均低于E-44树脂固化体系。反应速率方程结果显示,该双参数自催化模型与实际试验结果的吻合性良好,可用于描述双酚A型环氧树脂/芳香胺固化体系的固化历程。  相似文献   

7.
《广东化工》2021,48(4)
以环氧树脂E-51和E-44复配作为胶粘剂的基料,制备了一种固化速度快、耐温且力学性能好的环氧胶。本文主要研究了不同配比的环氧树脂对环氧胶性能的影响、以及不同固化剂对环氧胶耐热性能的影响。结果表明,当E-51和E-44二者采取1∶1的质量比时,其拉剪强度最高;选择R-2026作为本实验环氧胶体系中的固化剂,胶粘构件的强度最好;使用JH-5140LA固化剂制备的胶粘剂其自身热稳定性最优。  相似文献   

8.
采用环氧树脂E-51,稀释剂1,4-丁二醇二缩水甘油醚(622)和四氢邻苯二甲酸二缩水甘油酯(711),固化剂3-氨甲基-3,5,5-三甲基环己基胺(固化剂A)和α-(2-氨甲基乙基)-ω-(2-氨甲基乙氧基)聚[氧(甲基-1,2-亚乙基)](固化剂B)制备了4种环氧体系,通过粘度和力学性能测试及示差扫描量热分析对其加工性能、固化特性、耐热性及拉伸性能进行了研究。结果表明,当E-51,711,固化剂A和B的质量配比为95∶5∶12.05∶17.10时,环氧体系综合性能最佳,30℃下初始粘度为0.4 Pa.s,适用期为40 min,固化后的拉伸强度为70 MPa,断裂伸长率为6.1%,可用于湿法缠绕成型或液体模塑成型。  相似文献   

9.
新型聚酰胺/环氧固化体系性能的研究   总被引:1,自引:1,他引:1  
采用部分国产多元胺替代进口多元胺研制出新型低粘度、低分子质量聚酰胺系列固化剂。通过热失重(Tg)、FT-IR及力学性能等分析方法研究其与环氧树脂E-51固化体系的性能。结果表明该类聚酰胺固化剂具有较普通聚酰胺固化剂粘度低、粘接强度大、韧性大及耐热性好等优点。  相似文献   

10.
以环氧树脂E51及改性芳胺固化剂制备了环氧砂浆,通过适用期、流动度及强度测试研究了改性芳胺固化剂、混合稀释剂、偶联剂、消泡剂、水泥及细砂用量对E-51环氧砂浆压缩强度的影响。结果表明:当环氧树脂、稀释剂501、稀释剂692、固化剂、偶联剂、消泡剂、水泥及细砂的质量比为100∶10∶10∶65∶6∶1.5∶125∶400时,制备的环氧砂浆的压缩强度最高,达120 MPa,且其他性能指标也满足工程应用需求。  相似文献   

11.
非离子型水性环氧树脂固化剂的合成与性能研究   总被引:2,自引:0,他引:2  
采用低相对分子质量的环氧树脂E-51与聚醚-4000反应制备环氧改性聚醚加成物,再与多乙烯多胺进行反应制备胺封端的聚醚-环氧-胺加成物,最后采用单环氧化合物进行封端,合成非离子型水性环氧固化剂,实验表明工艺可行。对环氧E-51改性聚醚-4000合成过程中的各影响因素进行了研究,并对非离子型水性环氧固化剂的固化性能进行了评价。最佳配方与工艺为:n(环氧树脂E-51)∶n(聚醚-4000)2∶1,催化剂选用含三氟化硼(BF3)质量分数2%的乙醚溶液(60℃时加入,加入量为2%)。与现有的市售水性环氧固化剂固化性能相比,非离子型水性环氧固化剂固化的环氧体系的柔韧性和耐冲击性有大幅提高。  相似文献   

12.
分别制备出脂肪胺、芳香胺、酸酐和潜伏性固化体系的环氧灌封胶产品。利用高加速湿热试验,研究了高加速湿热老化环境下,此四种固化体系环氧的吸湿性能和拉伸剪切性能的衰减情况,并研究了高加速湿热老化环境,对脂肪胺固化环氧树脂灌封胶对不同基材、不同填料下的拉伸剪切的影响。结果表明,芳香胺固化的环氧,在高加速湿热老化环境(120℃,100%RH)下老化480h,拉剪强度衰减最小,约30%。并且,通过添加片状铝粉或硅微粉,芳香胺为固化剂,有望制得耐湿热性能较好的环氧灌封胶产品。  相似文献   

13.
采用高温潜伏性固化剂超细双氰胺对环氧树脂E51/改性胺固化剂593体系进行高温二次固化,并用聚丙二醇二缩水甘油醚(PPGDGE)对该体系进行改性。通过力学性能、动态力学分析、形状记忆性能和扫描电子显微镜研究了二次固化和PPGDGE用量对环氧树脂体系的影响。结果表明:二次固化使环氧树脂强度大幅提高,拉伸强度为79.1 MPa,提高了47.9%;PPGDGE的加入使环氧树脂的形状记忆性能大幅提高,当加入9 phr PPGDGE时,冲击强度提高了28.0%,形状回复速率提高了52.8%,形状回复率提高了5.2%。  相似文献   

14.
分别对环氧树脂(E-51)/无酚型曼尼斯碱固化剂481、E-51/酚醛改性胺T-31两种固化体系在不同温度下的凝胶时间进行了测定,并对固化物的力学性能进行了测试。结果表明:按m(E-51):m(481)=100:35时,固化物的拉伸性能最佳;与E-51/T-31相比,E-51/481的凝胶时间较长,固化反应表观活化能较高,反应温和;力学强度和粘接强度均得到提高,其中拉伸强度、断裂伸长率的增幅均超过50%;该固化物显示出较好的坚韧性,以此新型曼尼期碱481配制的灌注修补结构胶粘剂经工程应用效果较好。  相似文献   

15.
聚醚胺固化环氧树脂胶粘剂的研究   总被引:1,自引:1,他引:0  
以聚醚胺D-230为固化剂,研究了多官能度环氧树脂和硫酸钙晶须的加入对环氧树脂胶粘剂粘接性能的影响。研究结果表明,多官能度环氧树脂和改性硫酸钙晶须的加入,很好地改善了环氧树脂胶粘剂的高温性能;当环氧树脂m(E-51)∶m(F-51)∶m(AG-80)=3∶3∶2、改性硫酸钙晶须为树脂总质量的10%时,体系的粘接性能最佳,室温和100℃剪切强度分别为25.91MPa和6.11MPa,室温剥离强度可达5.26kN/m。  相似文献   

16.
采用高温潜伏性固化剂超细双氰胺对环氧树脂E51/改性胺固化剂593体系进行高温二次固化,并用聚丙二醇二缩水甘油醚(PPGDGE)对该体系进行改性。通过力学性能、动态力学分析、形状记忆性能和扫描电子显微镜研究了二次固化和PPGDGE用量对环氧树脂体系的影响。结果表明:二次固化使环氧树脂强度大幅提高,拉伸强度为79.1 MPa,提高了47.9%;PPGDGE的加入使环氧树脂的形状记忆性能大幅提高,当加入9 phr PPGDGE时,冲击强度提高了28.0%,形状回复速率提高了52.8%,形状回复率提高了5.2%。  相似文献   

17.
采用硫脲改性3种不同分子质量的聚醚胺制备环氧固化剂,通过红外光谱、固化剂的粘度和胺值、固化干燥时间、固化物力学性能测试等研究了反应温度对产物结构,聚醚胺分子质量对固化剂性能、固化剂用量和固化时间对体系性能的影响。结果表明,改性反应温度应不高于130℃,较高分子质量的D2000不适于硫脲改性,低分子质量的聚醚胺硫脲改性固化剂在-10℃下16~18 h即可达到实干。以聚醚胺D230和D400改性的固化剂具有良好的低温固化性能和力学性能,在-10℃下固化7 d后的压缩强度分别为70 MPa和64 MPa,拉伸强度分别为46 MPa和45 MPa,剪切强度分别为14 MPa和13 MPa。  相似文献   

18.
采用动态差式扫描量热法(DSC)和动态热机械分析法(DMA)分别研究了脂肪胺及芳香胺两种固化剂的混合对于环氧树脂体系的固化过程和玻璃化转变温度(T_g)的影响,同时研究了不同的树脂基体对体系T_g的影响。结果表明,两种固化剂的适量配比可在保证体系起始反应低温性的同时,使与苯环连接胺基的反应活性提高,从而实现整个体系低温固化可行性;芳香胺固化剂中的刚性苯环基团使得其固化体系T_g高于脂肪胺类固化剂,二者混合固化体系的T_g介于二者之间,并随着体系中芳香胺含量的增加而提高。即两种固化剂的混合可使体系同时满足低温固化可行性及较高耐热性。此外,树脂基体种类对于固化体系的T_g影响较小。  相似文献   

19.
《粘接》2018,(11)
在硅烷改性聚醚(MS)聚合物中添加不同比例(10%、25%、40%、50%、60%、75%和100%)的环氧树脂(E-51)及固化剂,制备出一系列E-51改性MS双组分弹性胶粘剂,并利用万能材料试验机对固化产物进行性能测试。结果表明,当E-51添加量为50g(100 g硅烷改性聚醚中的加入量)时,E-51/MS弹性胶粘剂固化后的力学强度达到相对最大值,硬度为50A、拉伸强度为5.5 MPa、断裂伸长率为410%、剪切强度为6.0 MPa和剥离强度为7.4 N/mm。且选用分子质量更大的E-44(环氧树脂)制得的E-44/MS胶粘剂的力学性能和粘接性能更优异。  相似文献   

20.
选用低黏度的双酚A型环氧树脂E-44、E-51与酚醛改性胺室温固化剂,开发了一种室温固化无溶剂岩芯胶粘剂。探究主体胶粘剂配方,并研究各助剂及用量对主体胶粘剂性能的影响。研究结果表明:在m(E-44):m(E-51):m(酚醛改性胺)=70:30:100的配方下,主体胶粘剂配方的综合性能较好;m(E-44):m(E-51):m(固化剂):m(增韧剂DOP):m(偶联剂KH-550):m(硅微粉):m(碳酸钙)=70:30:100:15:3:4:12时,该胶粘剂体系剪切强度最大,达到了16.10 MPa。选取该最大剪切强度胶粘固化体系进行其他测试,得到胶粘剂体系的接触角达到了79.4°;热失重结果显示,其在200℃之后才开始分解,耐热性较好。另外,该配方的凝胶时间及流平性均可满足实际操作要求,固化物不会造成岩芯污染,为该胶粘剂在岩芯上的应用提供科学依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号