首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为改善高比例联网风电的反调峰、不可控等冲击电网的不利特性,提出了一种基于电—氢混合储能的风氢耦合系统控制策略。建立直驱永磁风电机组、电解槽、燃料电池及超级电容器数学模型,研究耦合在直流母线的电解槽、燃料电池、超级电容器与直驱永磁风电机组之间的量化关系,设计风氢耦合系统的上层控制策略,并进行分析与研究。PSCAD/EMTDC中的仿真结果表明:通过超级电容器、电解槽与燃料电池的协调配合,超级电容器完全可以弥补电解槽与燃料电池响应延迟功率,同时实现风氢耦合系统出力可控、功率外特性友好,有效验证了本文所建立各设备数学模型的准确性及设计控制策略的有效性。  相似文献   

2.
针对分散式风电弃风严重、低电压过渡能力弱等问题,以提升其消纳能力及绿色友好并网为目标,提出风氢耦合系统模型及控制策略。构造1种电解槽和燃料电池集结于直流母线的结构,建立直驱风机、电解槽及燃料电池数学模型,基于能量协调控制策略,在MATLAB/Simulink中搭建风氢耦合混合系统模型,对系统正常运行及故障工况进行仿真分析,结果证明系统能够很好地提升分散式风电消纳及低电压过渡能力。  相似文献   

3.
大规模永磁直驱风场并网振荡现象频发,序阻抗模型逐步成为广泛采用的分析方法。目前对直驱风电机组的序阻抗建模将机侧模型(机侧变流器、永磁同步发电机)简化为可控电流源,忽略机侧模型对于机组阻抗特性的影响。该文建立考虑发电机、机侧变流器、直流母线动态过程、直流电压控制回路以及网侧变流器的直驱风电机组序阻抗详细解析模型,描述小信号分量在机组内部的频率特征分布规律;分析了机侧变流器控制特性、直流母线电容容量、直流母线电压控制特性对机组阻抗特性的影响。基于控制硬件在环实时仿真平台,验证解析模型的准确性,开展多个型号直驱风电机组的阻抗扫描与稳定性分析,验证机侧模型对机组阻抗特性的影响。  相似文献   

4.
针对风氢耦合发电系统的燃料电池和电解槽出力响应延迟问题,本文构建了一种风力发电机、燃料电池、电解槽和超级电容耦合于直流母线的结构。根据燃料电池、电解槽和超级电容特性,提出了一种能量管理控制策略,使燃料电池和电解槽能够缓慢地补偿/消纳风力机与负荷调度之间的功率差,超级电容能快速地平滑燃料电池和电解槽响应延迟引起的功率不平衡,确保并网功率与负荷调度一致。Matlab/Simulink仿真结果验证了风氢耦合并网系统能量管理控制策略的有效性,该策略提高了系统的风电消纳能力,降低了并网功率波动。  相似文献   

5.
永磁直驱风电机组低电压穿越时的有功和无功协调控制   总被引:5,自引:0,他引:5  
为提高基于全功率变流器并网的永磁直驱风电机组低电压穿越能力,在深入研究该风电机组运行特性和控制策略的基础上,分析了电网电压跌落过程中引起全功率变流器直流侧电压波动的原因,提出了一种采用机侧变流器控制直流电压稳定,网侧变流器实现最大功率跟踪和有功无功协调的新型控制策略。在低电压穿越过程中,该控制策略根据变流器直流侧电压的变化,通过机侧变流器调节风力发电机的电磁功率,使电网故障期间风电机组的功率波动由发电机转子承担,消除全功率变流器两端的功率不平衡,稳定直流侧电压。并根据电网电压幅值,通过网侧变流器实现对风电机组输出有功和无功的协调控制,抑制电网电压扰动。仿真结果表明本文所提控制策略在电网电压扰动时能有效抑制直流侧电压波动,使永磁直驱风电机组的低电压穿越能力得到显著提高,并能有效实现对电网电压的支持。  相似文献   

6.
电网对并网风电机组有明确的低电压穿越(LVRT)要求,而永磁直驱风电机组实现LVRT功能一般需要增加额外的制动设备,增加了系统成本。针对这个问题,提出一种基于反馈线性化的永磁直驱风电机组LVRT控制技术。该控制策略不同于传统的变流器机侧控制功率、网侧控制直流母线电压的控制方案,而是根据发电机转速和直流母线电压之间的非线性关系,采用反馈线性化理论设计了变流器机侧的直流母线电压控制器,同时在变流器网侧实现了最大功率点跟踪控制。为了验证控制方法的有效性,搭建了永磁直驱风电机组原理样机试验平台,进行了试验研究,试验结果表明在电网三相对称跌落70%时,最大直流电压波动控制在了7%以内。因此,在这种新型的控制策略作用下,永磁直驱风电机组能够很好地实现LVRT功能,同时避免了使用额外的制动单元。  相似文献   

7.
应用超级电容提高风电系统低电压穿越能力   总被引:4,自引:0,他引:4  
针对使用背靠背全功率变流器的永磁直驱风电系统,提出应用由超级电容和双向DC/DC变换器组成的储能系统提高风电机组的低电压穿越能力.研究永磁直驱风电系统的结构和控制策略,以及基于超级电容的储能系统平衡系统功率的特点,建立永磁直驱风电系统和基于超级电容的储能系统的模型,并给出控制策略和主要仿真参数.仿真结果显示,储能系统在电网电压发生跌落时,迅速平衡了直流母线两侧的功率变化,使直流母线电压保持稳定,并将风电机组与电网故障相隔离,保证风电机组继续向电网传输能量,从而提高风电系统的低电压穿越能力.  相似文献   

8.
针对风机与光伏发电功率波动、弃光等问题,提出风电/光伏/制氢/超级电容器并网系统模型及控制策略。建立风机、光伏、电解槽及超级电容器数学模型,构造一种变流器少、占地面积小、成本低的光伏、电解槽和超级电容器集结于直流母线结构。协调控制策略如下:当风电与光伏总出力大于负荷需求且功率差额小于电解槽额定功率时,电解槽消纳系统剩余功率;当负荷需求突降时,电解槽运行于额定状态,超级电容器快速充电,平抑直流母线电压波动,待到其端电压达到充电深度电压时,退出运行;当冲击性负荷扰动电网时,电解槽处于停机状态,超级电容器快速放电,平抑直流母线电压波动,待其达到放电深度电压时,退出运行。通过仿真,验证了风电/光伏/制氢/超级电容器并网系统模型与控制策略准确性及有效性。  相似文献   

9.
提出直驱永磁风电机组高电压故障穿越控制策略。分析直驱永磁风电机组暂态运行特性,研究变流器运行不同区域的电压向量关系,分析直流电容电压跃升机理。设计直驱永磁风电机组上层控制策略,实现机网侧变流器执行层的dq功率参考值由不同机端电压跃升度决定。PSCAD/EMTDC中的仿真结果表明:机端电压跃升幅度较小时,该控制策略不仅可确保直驱永磁风电机组直流电容电压稳定在安全值以内,且在不影响风电机组向电网注入有功功率的同时,还可向故障点注入一定感性无功功率,支撑母线故障电压恢复;机端电压跃升幅度较大时,该控制策略通过网侧变流器向电网注入容性无功功率防止直流电容电压越限,在满足变流器容量约束条件的前提下,向电网注入有功功率。  相似文献   

10.
针对使用背靠背全功率变流器的永磁直驱风电系统,提出采用在风电机组直流侧添加卸荷支路的方法提高机组的低电压穿越能力。文中对直驱永磁同步风力发电系统的暂态进行了分析,重点分析当电网发生故障,电网电压跌落时机组的暂态行为。在PSCAD/EMTDC仿真软件上搭建带有卸荷支路的直驱永磁同步风力发电系统的并网模型,并给出主要控制策略和主要仿真参数。仿真结果显示,卸荷支路在机组并网点电压跌落时,能够很好的平衡系统功率,维持直流母线电压恒定,起到机组与电网故障相隔离的作用。保证了机组不与电网发生解列、继续向电网注入功率,从而很好的提高了风电机组的低电压穿越能力。  相似文献   

11.
电网故障时永磁直驱风电机组的低电压穿越控制策略   总被引:16,自引:8,他引:8  
为提高永磁直驱风电机组所并电网的运行稳定性,研究电网故障下永磁直驱风电机组的运行特性以及提高其低电压穿越运行能力,文中提出一种适用于采用双脉宽调制变换器并网的永磁直驱风电机组的低电压穿越运行控制方案。通过在电网故障时限制发电机的电磁功率来限制输入至直流侧电容和电网侧变换器的功率,通过在电网故障时采用考虑发电机功率信息的网侧变换器电流闭环控制来实现直流链电压稳定控制,从而有效实现发电系统的低电压穿越运行。系统仿真结果表明,所提出的控制方案无需增加硬件保护装置,在电网对称及非对称故障下均可有效实现永磁直驱风电机组的低电压穿越运行。  相似文献   

12.
直驱永磁同步风力发电机的最佳风能跟踪控制   总被引:15,自引:4,他引:11  
姚骏  廖勇  瞿兴鸿  刘刃 《电网技术》2008,32(10):11-15
与双馈交流励磁风力发电系统相比,直驱永磁同步风力发电系统具有结构简单、发电效率及运行可靠性高等优点。文章采用双脉宽调制(pulse-width modulation,PWM)变换器作为直驱永磁同步发电机的并网电路,根据风力机和发电机的运行特性提出了一种基于最佳功率给定的发电机最大风能跟踪控制策略。建立了基于双PWM变换器的直驱永磁同步风力发电实验系统,实验结果验证了所提出控制策略的正确性。该发电系统可实现最大风能跟踪控制、并网有功和无功功率独立控制以及变速恒频发电运行。  相似文献   

13.
以永磁直驱风力发电机组为研究对象,建立了包括风力机、传动部分、永磁直驱发电机、矢量控制策略、最大风能捕获策略的整体数学模型;应用Matlab/Simulink工具,以建立的数学模型为基础搭建了永磁直驱风力发电机组仿真模型,并以两次阶跃风速为例对所建模型并网后运行特性进行了仿真研究。实现了永磁直驱风力发电机组的最大风能捕获和功率解耦控制,仿真结果表明,永磁直驱风力发电机组具有良好的运行特性,同时验证了所建模型的正确性和有效性。  相似文献   

14.
为提高永磁直驱型风力发电机组的高电压穿越能力,在研究电网电压骤升下风力发电机组运行特性基础上提出一种基于双模控制的永磁直驱型风力发电机组高电压穿越控制策略。以电网电压骤升幅度及直流母线电压的升高程度为依据,利用选择器进行网侧变流器控制模式的转换,从而使直驱型风力发电机组具备高电压穿越能力。基于PSCAD仿真平台的仿真结果及应用结果表明,该控制策略不仅可以保证直驱型风力发电机组在电网电压骤升期间不脱网连续运行,还可以有效提高风力发电机组的无功补偿能力,有利于电网的安全稳定运行。  相似文献   

15.
为深入研究直驱永磁同步风力发电机组的高性能控制,研究了直驱永磁同步发电机侧系统构成、原理及建模方法,分析了风力机与永磁同步发电机、电压空间矢量(SVPWM)整流原理及其建模,基于双闭环PI控制搭建了机侧系统仿真模型。通过仿真与分析,证明了双闭环PI控制策略在4种不同风速下实现最大功率追踪的可行性。该系统模型的建立为机组高性能控制的研究打下基础,对于深入理解直驱永磁同步风力发电系统运行原理及推广应用具有重要意义。  相似文献   

16.
采用飞轮储能的永磁直驱风电机组有功平滑控制策略   总被引:4,自引:1,他引:3  
风速的不稳定性和间歇性使得采用最大风能捕获控制策略的风电机组输出有功功率会随风速的变化而波动,影响风电机组的输出电能质量,引起电网频率波动,甚至带来电网的稳定性问题.简单分析了永磁直驱风电机组的全功率双脉宽调制(PWM)交-直-交变流器的控制策略,提出了在不改变现有变流器控制策略的前提下,在变流器的直流侧接入飞轮储能系统,用以实现风电机组输出有功功率的平滑控制.设计了飞轮储能系统的能量控制策略,并给出了平滑功率值的计算方法.对1.3 MW永磁直驱风电机组的运行特性进行了仿真研究,仿真结果表明,采用所提出的飞轮储能系统能量控制策略能够有效平滑风电机组输出有功功率,提高了风电机组的输出电能质量.  相似文献   

17.
抑制负序和谐波电流的永磁直驱风电系统并网控制策略   总被引:2,自引:1,他引:1  
在详细分析永磁直驱风力发电系统并网电流负序分量及谐波分量产生机理的基础上,从改善永磁直驱风电系统输出电能质量的角度出发,提出了一种采用准比例谐振(quasi-proportional-resonant,quasi-PR)控制器抑制并网负序电流分量及谐波电流分量的控制策略。该控制策略不仅可有效抑制由电网电压不平衡引起的并网电流负序分量,而且能抑制由电网电压或发电系统引入的低次谐波电流分量。仿真验证了上述控制策略的正确性和可行性。  相似文献   

18.
全功率变流器永磁直驱风电系统低电压穿越特性研究   总被引:28,自引:4,他引:24  
随着风电机组安装容量的不断上升,风电系统在电网故障情况下的运行变得尤为重要,电网导则要求风电机组在电网电压瞬间跌落一定范围内不脱网运行。针对使用背靠背全功率变流器的永磁直驱风电系统,提出一种在电网电压瞬间跌落情况下不脱网运行的方法。电网发生电压瞬间跌落时,网侧变流器运行在静止无功补偿(STATCOM)模式,依据电网电压跌落的深度决定发出无功电流的大小,通过快速提供无功电流来稳定电网电压,实现直驱型风电系统的低电压穿越功能。仿真和实验结果表明电网电压故障时使直驱风电系统运行在STATCOM模式可以有效提高低电压穿越能力。  相似文献   

19.
并联双PWM变流器在低速永磁直驱风力发电系统中的应用   总被引:9,自引:5,他引:4  
基于大功率低速永磁直驱风力发电系统高可靠性要求,以背靠背载波移相并联双脉宽调制(PWM)变流器作为永磁直驱风力发电功率变换单元,对变流器冗余性、并联特性、输出开关纹波特性进行了分析设计。重点针对载波移相并联单元间存在的环流问题进行了分析,提出了一种低频环流抑制方案。另外,采用基于现场可编程门阵列(FPGA)作为辅助处理器的控制器方案实现载波移相并联控制。经过实验验证了所述变流器在可靠性、环流抑制性能、谐波特性,以及硬件实现等方面均能较好地满足系统要求,可适用于低速永磁直驱发电系统。  相似文献   

20.
直驱永磁同步风力发电机组低电压穿越控制策略   总被引:4,自引:0,他引:4  
赵兴勇 《中国电力》2011,44(5):74-77
分析直驱永磁同步风力发电机组(DDPMSG)在电网故障情况下的低电压运行特性,提出一种综合控制策略,包括通过变桨距控制实现最大风能追踪;控制发电机电磁功率以控制直流链及电网侧逆变器的功率;利用发电机侧功率控制网侧变流器的电流,实现直流链电压的稳定,以提高直驱永磁同步风力发电机组的低电压穿越能力,维持所并电网的运行稳定性。运用仿真分析软件PSCAD/EMTDC建立DDPMSG及其控制策略的仿真模型,仿真结果验证了所提策略的有效性和可行性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号