首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
This paper presents an intelligent control approach that incorporates sliding mode control (SMC) and fuzzy neural network (FNN) into the implementation of back‐stepping control for a path tracking problem of a dual‐arm wheeled mobile manipulator subject to dynamic uncertainties and nonholonomic constraints. By using the back‐stepping technique, the system equations are reformulated into two levels: the kinematic level and the dynamic level. A sliding manifold is constructed by considering the disturbance free kinematic level equations only. With all the system uncertainties concentrated in the dynamic level, an FNN controller associated with a switching type of control law is employed to enforce sliding mode on the prescribed manifold. All parameter adjustment rules for the proposed controller are derived from the Lyapunov theory such that uniform ultimate boundedness for both the tracking error and the FNN weighting updates is ensured. A simulation study, which compares different control design approaches, is included to illustrate the promise of the proposed SMC–FNN method. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
A fuzzy neural network (FNN) controller with adaptive learning rates is proposed to control a nonlinear mechanism system in this study. First, the network structure and the on-line learning algorithm of the FNN is described. To guarantee the convergence of the tracking error, analytical methods based on a discrete-type Lyapunov function are proposed to determine the adaptive learning rates of the FNN. Next, a slider-crank mechanism, which is driven by a permanent magnet (PM) synchronous motor, is studied as an example to demonstrate the effectiveness of the proposed control technique; the FNN controller is implemented to control the slider position of the motor-slider-crank nonlinear mechanism. The robust control performance and learning ability of the proposed FNN controller with adaptive learning rates is demonstrated by simulation and experimental results.  相似文献   

3.
A novel fuzzy neural network (FNN) quadratic stabilization output feedback control scheme is proposed for the trajectory tracking problems of biped robots with an FNN nonlinear observer. First, a robust quadratic stabilization FNN nonlinear observer is presented to estimate the joint velocities of a biped robot, in which an H/sub /spl infin// approach and variable structure control (VSC) are embedded to attenuate the effect of external disturbances and parametric uncertainties. After the construction of the FNN nonlinear observer, a quadratic stabilization FNN controller is developed with a robust hybrid control scheme. As the employment of a quadratic stability approach, not only does it afford the possibility of trading off the design between FNN, H/sub /spl infin// optimal control, and VSC, but conservative estimation of the FNN reconstruction error bound is also avoided by considering the system matrix uncertainty separately. It is shown that all signals in the closed-loop control system are bounded.  相似文献   

4.
A supervisory fuzzy neural network (FNN) control system is designed to track periodic reference inputs in this study. The control system is composed of a permanent magnet (PM) synchronous servo motor drive with a supervisory FNN position controller. The supervisory FNN controller comprises a supervisory controller, which is designed to stabilize the system states around a defined bound region and an FNN sliding-mode controller, which combines the advantages of the sliding-mode control with robust characteristics and the FNN with online learning ability. The theoretical and stability analyses of the supervisory FNN controller are discussed in detail. Simulation and experimental results show that the proposed control system is robust with regard to plant parameter variations and external load disturbance. Moreover, the advantages of the proposed control system are indicated in comparison with the sliding-mode control system  相似文献   

5.
移动机械臂系统一般由移动平台和机器臂组成,它既具有机器臂的操作灵活性,又具有移动机器人的可移动性,因此其应用范围要比单个系统宽得多。这篇文章研究了由非完整移动平台和完整机械臂构成的移动机械臂系统的鲁棒跟踪控制问题,基于误差动态方程和耗散不等式引理设计了一种鲁棒跟踪控制器,该控制器在出现外界干扰时能使系统渐近跟踪给定信号。使用Matlab6.5对系统进行了仿真研究,仿真结果表明所提出的鲁棒控制算法是正确有效的。  相似文献   

6.
Neural-network control of mobile manipulators   总被引:9,自引:0,他引:9  
In this paper, a neural network (NN)-based methodology is developed for the motion control of mobile manipulators subject to kinematic constraints. The dynamics of the mobile manipulator is assumed to be completely unknown, and is identified online by the NN estimators. No preliminary learning stage of NN weights is required. The controller is capable of disturbance-rejection in the presence of unmodeled bounded disturbances. The tracking stability of the closed-loop system, the convergence of the NN weight-updating process and boundedness of NN weight estimation errors are all guaranteed. Experimental tests on a 4-DOF manipulator arm illustrate that the proposed controller significantly improves the performance in comparison with conventional robust control.  相似文献   

7.
In this paper, a robust tracking controller is proposed for the trajectory tracking problem of a dual‐arm wheeled mobile manipulator subject to some modeling uncertainties and external disturbances. Based on backstepping techniques, the design procedure is divided into two levels. In the kinematic level, the auxiliary velocity commands for each subsystem are first presented. A sliding‐mode equivalent controller, composed of neural network control, robust scheme and proportional control, is constructed in the dynamic level to deal with the dynamic effect. To deal with inadequate modeling and parameter uncertainties, the neural network controller is used to mimic the sliding‐mode equivalent control law; the robust controller is designed to compensate for the approximation error and to incorporate the system dynamics into the sliding manifold. The proportional controller is added to improve the system's transient performance, which may be degraded by the neural network's random initialization. All the parameter adjustment rules for the proposed controller are derived from the Lyapunov stability theory and e‐modification such that uniform ultimate boundedness (UUB) can be assured. A comparative simulation study with different controllers is included to illustrate the effectiveness of the proposed method.  相似文献   

8.
A tracking controller for nonholonomic dynamic systems is proposed which allows global tracking of arbitrary reference trajectories and renders the closed loop system robust with respect to bounded disturbances. The controller is based on [Chwa, D. (2004). Sliding-mode tracking control of nonholonomic wheeled mobile robots in polar coordinates. IEEE Transactions on Control Systems Technology, 12(4), 637-644] and shows several generalizations and improvements. The control law for tracking of general nonholonomic systems using inverse kinematic models (IKM) and sliding surfaces is stated. Conditions are proven under which robust tracking is achieved for a specific system. Tracking control is applied to the bi-steerable mobile robot, and simulation results are presented.  相似文献   

9.
This paper develops an adaptive fuzzy controller for robot manipulators using a Markov game formulation. The Markov game framework offers a promising platform for robust control of robot manipulators in the presence of bounded external disturbances and unknown parameter variations. We propose fuzzy Markov games as an adaptation of fuzzy Q-learning (FQL) to a continuous-action variation of Markov games, wherein the reinforcement signal is used to tune online the conclusion part of a fuzzy Markov game controller. The proposed Markov game-adaptive fuzzy controller uses a simple fuzzy inference system (FIS), is computationally efficient, generates a swift control, and requires no exact dynamics of the robot system. To illustrate the superiority of Markov game-adaptive fuzzy control, we compare the performance of the controller against a) the Markov game-based robust neural controller, b) the reinforcement learning (RL)-adaptive fuzzy controller, c) the FQL controller, d) the Hinfin theory-based robust neural game controller, and e) a standard RL-based robust neural controller, on two highly nonlinear robot arm control problems of i) a standard two-link rigid robot arm and ii) a 2-DOF SCARA robot manipulator. The proposed Markov game-adaptive fuzzy controller outperformed other controllers in terms of tracking errors and control torque requirements, over different desired trajectories. The results also demonstrate the viability of FISs for accelerating learning in Markov games and extending Markov game-based control to continuous state-action space problems.  相似文献   

10.
A new hybrid direct/indirect adaptive fuzzy neural network (FNN) controller with a state observer and supervisory controller for a class of uncertain nonlinear dynamic systems is developed in this paper. The hybrid adaptive FNN controller, the free parameters of which can be tuned on-line by an observer-based output feedback control law and adaptive law, is a combination of direct and indirect adaptive FNN controllers. A weighting factor, which can be adjusted by the tradeoff between plant knowledge and control knowledge, is adopted to sum together the control efforts from indirect adaptive FNN controller and direct adaptive FNN controller. Furthermore, a supervisory controller is appended into the FNN controller to force the state to be within the constraint set. Therefore, if the FNN controller cannot maintain the stability, the supervisory controller starts working to guarantee stability. On the other hand, if the FNN controller works well, the supervisory controller will be deactivated. The overall adaptive scheme guarantees the global stability of the resulting closed-loop system in the sense that all signals involved are uniformly bounded. Two nonlinear systems, namely, inverted pendulum system and Chua's (1989) chaotic circuit, are fully illustrated to track sinusoidal signals. The resulting hybrid direct/indirect FNN control systems show better performances, i.e., tracking error and control effort can be made smaller and it is more flexible during the design process.  相似文献   

11.
This paper addresses the trajectory tracking control of a nonholonomic wheeled mobile manipulator with parameter uncertainties and disturbances. The proposed algorithm adopts a robust adaptive control strategy where parametric uncertainties are compensated by adaptive update techniques and the disturbances are suppressed. A kinematic controller is first designed to make the robot follow a desired end-effector and platform trajectories in task space coordinates simultaneously. Then, an adaptive control scheme is proposed, which ensures that the trajectories are accurately tracked even in the presence of external disturbances and uncertainties. The system stability and the convergence of tracking errors to zero are rigorously proven using Lyapunov theory. Simulations results are given to illustrate the effectiveness of the proposed robust adaptive control law in comparison with a sliding mode controller.  相似文献   

12.
In this paper, an observer-based direct adaptive fuzzy-neural network (FNN) controller with supervisory mode for a certain class of high order unknown nonlinear dynamical system is presented. The direct adaptive control (DAC) has the advantage of less design effort by not using FNN to model the plant. By using an observer-based output feedback control law and adaptive law, the free parameters of the adaptive FNN controller can be tuned on-line based on the Lyapunov synthesis approach. A supervisory controller is appended into the FNN controller to force the state to be within the constraint set. Therefore, if the FNN controller cannot maintain the stability, the supervisory controller starts working to guarantee stability. On the other hand, if the FNN controller works well, the supervisory controller will be de-activated. The overall adaptive scheme guarantees the global stability of the resulting closed-loop system in the sense that all signals involved are uniformly bounded. Simulation results also show that our initial control effort is much less than those in previous works, while preserving the tracking performance  相似文献   

13.
This paper presents methodologies for dynamic modeling and trajectory tracking of a nonholonomic wheeled mobile manipulator (WMM) with dual arms. The complete dynamic model of such a manipulator is easily established using the Lagrange’s equation and MATHEMATICA. The structural properties of the overall system along with its subsystems are also well investigated and then exploited in further controller synthesis. The derived model is shown valid by reducing it to agree well with the mobile platform model. In order to solve the path tracking control problem of the wheeled mobile manipulator, a novel kinematic control scheme is proposed to deal with the nonholonomic constraints. With the backstepping technique and the filtered-error method, the nonlinear tracking control laws for the mobile manipulator system are constructed based on the Lyapunov stability theory. The proposed control scheme not only achieves simultaneous trajectory and velocity tracking, but also compensates for the dynamic interactions caused by the motions of the mobile platform and the two onboard manipulators. Simulation results are performed to illustrate the efficacy of the proposed control strategy.  相似文献   

14.
基于FNN的覆冰机器人越障机械臂轨迹跟踪控制   总被引:1,自引:1,他引:0       下载免费PDF全文
覆冰机器人除冰时要跨越各种障碍物。采用卡尔曼滤波学习算法,将自适应模糊神经网络控制器用于覆冰机器人越障时的机械臂轨迹跟踪控制,解决了BP算法实时性差的问题。经过仿真实验论证,该方法对覆冰机器人越障时的机械臂轨迹跟踪控制具有很好的效果,表明控制策略和理论分析的可行性。  相似文献   

15.
A kind of launching platform driven by two permanent magnet synchronous motor (PMSM) motors which is used to launch kinetic load to hit the target, always faces strong parameter uncertainties and strong external disturbance such as the air current impulsion, which would degrade their tracking accuracy greatly. In this paper, an adaptive robust nonlinear controller is proposed for high-accuracy motion control of the launching platform, in which the adaption law is designed to estimate the unknown coupling coefficients of torque disturbance and feed-forward cancellation technique is used to compensate the coupling torque disturbance and some other constant disturbances. In addition, a nonlinear robust feedback term is designed to inhibit the influence of the parameter estimation error and the other model uncertainty to stabilise the closed-loop system. Considering that some system states are immeasurable due to cost-reduction, volume/weight limitations and structure restriction or heavy measurement noise is usually associated with the measurements, which may also deteriorate the achievable performance of full-state feedback controllers; a high-order sliding-mode observer is used to estimate the unmeasured system states, and it is synthesised with the adaptive robust controller via feed-forward cancellation method. The intermediary virtual control law and the final control law are derived by integrating the backstepping method. Furthermore, the controller theoretically guarantees a prescribed tracking transient performance and final tracking accuracy while achieving asymptotic tracking performance in the presence of parametric uncertainties only, which is very important for high-accuracy tracking control of launching platform. Extensive comparative experimental results are obtained to verify the high performance nature of the proposed control strategy.  相似文献   

16.
This paper considers an output feedback learning control for a class of uncertain nonlinear systems with flexible components. The distinct time delay caused by system flexibility leads to the phase lag phenomenon and low system bandwidth. Therefore, the tracking problem of such systems is very difficult and challenging. To improve the tracking performance of such systems, an iterative learning control scheme using the Fourier neural network (FNN) is presented in this paper. This scheme uses only local output information for feedback. FNN employs orthogonal complex Fourier exponentials as its activation functions and the physical meaning of its hidden-layer neurons is clear. The FNN-based learning controller introduced here relies on the frequency-domain method, which converts the tracking problem in the time domain into a number of regulation problems in the frequency domain. A novel phase compensation method is introduced to deal with the phase lag phenomenon, so that the bandwidth of the closed-loop system is increased. Experiments on a belt-driven positioning table are conducted to show the effectiveness of the proposed controller.  相似文献   

17.
控制受限的移动机器人鲁棒跟踪控制器设计   总被引:5,自引:1,他引:5  
研究了非完整移动机器人动力学模型中带有参数不确定和控制受限的鲁棒轨迹跟踪控 制器的设计问题.在建立移动机器人的全动态误差模型的基础上,应用滚动时域控制(RHC)和线 性矩阵不等式(LMIs)方法,设计了鲁棒跟踪控制器,在满足非完整和控制约束的条件下,实现了 机器人位置,导向角以及速度的同时渐近跟踪.系统稳定性的充分条件以LMI的形式给出.仿真 结果验证了提出方法的可行性和有效性.  相似文献   

18.
针对轮式移动机器人的轨迹跟踪控制问题,在分析了机器人运动学模型的基础上,构建多机器人的领航-追随模型;采用跟踪微分器在输入输出两端安排过渡过程,设计了一种基于多变量解耦的非线性PID轨迹跟踪控制器;搭建以Arduino Mega 1280控制板为核心的移动机器人实验平台,采用速度PID控制器以满足机器人驱动电机的实时调速要求,基于ROS提出一种结构化和模块化的多机器人控制系统;在此基础上进行实验,并将实验结果与传统PID方法控制的实验结果进行对比;实验结果验证了文章所提算法的有效性,控制器易于实现且具有一定的鲁棒性。  相似文献   

19.
在非完整移动机器人轨迹跟踪问题中,针对机器人运动学与动力学模型的参数和非参数不确定性,提出了一种混合神经网络鲁棒自适应轨迹跟踪控制器,该控制器由运动学控制器和动力学控制器两部分组成;其中,采用了参数自适应的径向基神经网络对运动学模型的未知部分进行了建模,并采用权值在线调整的单层神经网络和自适应鲁棒控制项构成了动力学控制器;基于Lyapunov方法的设计过程保证了系统的稳定性和收敛性,仿真结果证明了算法的有效性。  相似文献   

20.
This work deals with the robust position tracking control problem for an omnidirectional mobile robot. To this aim, four continuous Sliding-Mode Control strategies are presented. The position and orientation of the platform are assumed to be the only available information about the system. To implement the controllers as output-feedback controllers, a High-Order Sliding-Mode Observer is implemented for each output signal. The proposed robust control strategies are able to deal with some classes of external disturbances. The closed-loop stability of each controller is proved by means of Lyapunov functions and homogeneity concepts. Simulations and experiments validate the applicability of the proposed controllers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号