首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 710 毫秒
1.
将水溶性羧甲基壳聚糖(C-Cs)作为石墨负极粘结剂,通过测试首次充放电性能、循环性能和倍率性能以及循环前后形貌的变化,并与聚偏氟乙烯(PVDF)作为石墨负极粘结剂的性能进行了比较。结果表明:使用7%(质量分数)C-Cs粘结剂的石墨负极在0.5C(1C可逆比容量为372 mA·h/g)倍率下循环400个周期后,可逆比容量为312mA·h/g,10C倍率充放电测试下的可逆比容量为252 mA·h/g;经过100次循环之后,使用10%C-Cs粘结剂的石墨负极与使用PVDF为粘结剂的石墨负极相比,其交流阻抗有所降低,有助于电极比容量的提高和循环性能的改善。  相似文献   

2.
利用PVA碳源包覆、HF酸刻蚀和沥青二次包覆方法制备多孔珊瑚状硅/碳复合负极材料,得到沥青含量分别为30%、40%和50%(质量分数)的3种硅/碳复合材料样品。采用XRD和SEM分别对复合材料的组成和形貌进行表征,并采用电化学测试手段对其性能进行测试。结果表明,经二次沥青包覆后,复合材料的电化学性能得到明显提高。当二次包覆的沥青含量为40%时,在100 m A/g的电流密度下,该样品第二次充放电循环的放电容量达到773 m A·h/g,经60次循环后,放电容量仍然保持在669 m A·h/g,其容量损失率仅为0.23%/cycle。因此,调整二次包覆碳含量可明显改善复合材料的循环稳定性。  相似文献   

3.
通过镁和氧化亚硅之间的氧化还原反应制备细硅,并采用湿法混料及高温热解法合成了锂离子电池用硅/石墨/裂解碳复合负极材料。利用XRD、SEM、电化学测试考察了复合材料的结构与电化学性能,并结合循环伏安和电化学阻抗技术研究了复合材料的电化学可逆性和动力学性能。结果表明:制备的复合材料首次可逆容量为880 mAh/g,循环40次后为780 mAh/g,容量保持率可达88.6%,该方法显著改善了硅基材料作为锂离子电池负极材料的电化学性能。性能的提高主要归因于纳米结构的硅均匀分散在碳基体中,很好地抑制了充放电过程中的体积效应,同时石墨和裂解碳也充分保证了复合材料良好的导电性。  相似文献   

4.
通过镁和氧化亚硅之间的氧化还原反应制备细硅,并采用湿法混料及高温热解法合成了锂离子电池用硅/石墨/裂解碳复合负极材料。利用XRD、SEM、电化学测试考察了复合材料的结构与电化学性能,并结合循环伏安和电化学阻抗技术研究了复合材料的电化学可逆性和动力学性能。结果表明:制备的复合材料首次可逆容量为880 mAh/g,循环40次后为780 mAh/g,容量保持率可达88.6%,该方法显著改善了硅基材料作为锂离子电池负极材料的电化学性能。性能的提高主要归因于纳米结构的硅均匀分散在碳基体中,很好地抑制了充放电过程中的体积效应,同时石墨和裂解碳也充分保证了复合材料良好的导电性。  相似文献   

5.
通过高温裂解酚醛树脂混合纳米硅和碳纳米管,得到硅/无定形碳/碳纳米管复合材料,研究了硅含量对该复合材料充放电性能和电池容量的影响.结果表明,该复合材料与硅/无定形碳复合材料相比,首次充放电效率提高到80%;硅含量30%和40%的该复合材料既具有很高的容量,又具有较好的循环性能.  相似文献   

6.
通过高温裂解酚醛树脂混合纳米硅和碳纳米管,得到硅/无定形碳/碳纳米管复合材料,研究了硅含量对该复合材料充放电性能和电池容量的影响。结果表明,该复合材料与硅/无定形碳复合材料相比,首次充放电效率提高到80%;硅含量30%和40%的该复合材料既具有很高的容量,又具有较好的循环性能。  相似文献   

7.
以三维网络结构的科琴黑(KB)为模板和导电骨架,采用湿浸渍法合成了六方结构的LiMnBO3/C复合材料。用X-射线衍射、扫描电镜和氮吸附等测试技术分别对样品的微观结构、形貌和比表面积进行了表征。用恒流充放电和循环伏安对复合材料的电化学性能进行了表征。当LiMnBO3/C复合材料以C/20倍率进行锂离子脱嵌性能测试时,30周循环后放电容量保持率为87.4%,表现出优良的循环稳定性。当电流从C/20、C/10增至C/5时,复合材料的首次放电比容量依次为138.8、124.5和100.5mA h g-1,表明复合材料具有良好的倍率性能。  相似文献   

8.
采用乙醇作为介质,FeCl3为氧化剂,对甲苯磺酸钠为掺杂剂,通过吡咯单体在钒酸锂表面的氧化聚合制备出了钒酸锂/聚吡咯(LiV3O8/PPy)复合材料。采用X-射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)对复合材料的结构与形貌进行表征。用恒流充放电测试、循环伏安(CV)和交流阻抗(EIS)等研究了聚吡咯包覆量对材料电化学性能的影响。结果表明:在钒酸锂表面均匀地包覆了一层厚度约10nm的聚吡咯,但并没有改变钒酸锂的晶型结构。当聚吡咯包覆量为6% 时,复合材料的电化学性能最好,在0.1C充放电倍率下,首次放电比容量为274mAh/g,循环100次后样品的放电比容量为239.4mAh/g,容量保持率为87.4%,而未包覆PPy的LiV3O8,其首次放电比容量为227.4mAh/g,循环100次后样品的放电比容量为160.1mAh/g,容量保持率仅为70.4%。LiV3O8/PPy复合正极材料的电化学性能得到了明显提高。  相似文献   

9.
采用化学气相沉积(CVD)结合前驱体浸渍裂解(PIP)技术制备了SiC涂层的C/Si C和C/SiBCN复合材料,研究了高温循环氧化对2种复合材料弯曲性能的影响。结果表明,与SiC-C/SiC相比,SiC-C/SiBCN复合材料的平均室温抗弯曲强度约为605 MPa,增幅达到126.6%。在1000和1200℃循环3次后,Si C-C/SiBCN的剩余抗弯曲强度分别为417和342 MPa,强度保留率分别为68.9%和56.5%,显著优于SiC-C/Si C复合材料。与PIP SiC陶瓷基体相比,Si BCN基体的孔隙率更低,高温下SiBCN氧化后形成SiO_2和B_2O_3,可以更好地降低O_2的透过率,提高材料的抗氧化性能和强度保留率。  相似文献   

10.
以三维网络结构的科琴黑(KB)为模板和导电骨架,采用湿浸渍法合成了六方结构的LiMnBO_3/C复合材料。用X射线衍射、扫描电镜和氮吸附等测试技术分别对样品的微观结构、形貌和比表面积进行了表征。用恒流充放电和循环伏安对复合材料的电化学性能进行了研究。当LiMnBO_3/C复合材料以C/20倍率进行锂离子脱嵌性能测试时,30周循环后放电容量保持率为87.4%,表现出优良的循环稳定性。当电流从C/20、C/10增至C/5时,复合材料的首次放电比容量依次为138.8、124.5和100.5 m Ah·g~(-1),表明复合材料具有良好的倍率性能。  相似文献   

11.
采用嵌段聚合物型表面活性剂P123作为结构导向剂,利用溶胶-凝胶方法制备出纳米TiO2作为合成Li4Ti5O12锂离子电池负极材料的原料之一.然后采用湿法球磨辅助的固相反应合成方法,以丙酮作为球磨介质,制备出Li4Ti5O12锂离子电池负极材科,并对所制备的Li4Ti5O12电极材料进行扫描电镜SEM、透射电镜TEM、粉末X射线衍射(XRD)、循环伏安(CV)以及循环性能测试.电化学性能测试表明所制各出的锂离子电池负极材料Li4Ti5O12具有较高的放电比容量和优异的循环性能.在电流密度为16 mA/g时首次放电比容量为155 mAh/g,首次库仑效率为98.3%.300次循环结束时放电比容量仍可达150.8 mAh/g,约为首次放电比容量的97.3%,300次循环容量仅衰减了2.7%.  相似文献   

12.
目的 提高冷喷涂制备锂离子电池硅(Si)基负极的电化学性能,探究冷喷涂制备硅基负极结合特性对电极性能的影响。方法 通过涂覆和冷喷涂制备硅基负极,利用剥离强度试验测试活性材料与集流体的结合强度。通过扫描电镜表征充放电前后电极表面及断面形貌,分析2种电极的结构稳定性。通过观察单颗粒子沉积形貌,研究硅颗粒的沉积特性。采用恒流充放电、循环伏安法、交流阻抗法分别研究电极的循环性能和动力学特性。结果 在相同剥离条件下,Si–喷涂样品结合强度高,且剥离现象出现较晚,Si–喷涂样品的平均载荷为2.04 N,大于Si–涂覆样品的平均载荷(1.51 N)。Si–涂覆电极材料与集流体的贴合度较差,铜箔与涂层以及涂层材料内部均存在大量的孔隙结构,Si–喷涂电极活性材料均匀沉积于铜箔表面簇状的缝隙中,涂层较薄,未能覆盖簇状凸起。硅颗粒无法连续沉积形成较厚的涂层,仅以嵌入的方式沉积于铜箔表面。Si–涂覆电极循环200次后,容量仅剩51 mAh/g,而Si–喷涂电极循环200次后,容量高达240 mAh/g。Si–喷涂电极的Rct比Si–涂覆小,说明Si–喷涂电极的嵌入式结构利于电荷的转移。Si–涂覆电极的锂离子扩...  相似文献   

13.
以抗坏血酸(VC)为碳源微波加热合成了LiFePO4/C复合材料.采用X射线衍射、扫描电镜、电导率测试和恒流充放电等方法对材料的结构、形貌、电导率及电化学性能进行表征,考察了VC加入量对所合成材料电化学性能的影响.结果表明:VC能有效抑制Fe2+的氧化;当添加VC为10wt%,微波功率为640W,加热8min时,得到的LiFePO4/C材料电化学性能最优;放电倍率为0.2C和2C时首次放电比容量分别为137、97 mAh/g,10次循环后容量保持率分别达95%和81%.  相似文献   

14.
采用高温固相法合成掺杂改性的NaV1-xCrxPO4F(x=0,0.04,0.08)作为钠离子电池正极材料。通过红外光谱(FT-IR)、X射线衍射(XRD)和扫描电镜(SEM)等对材料的晶体结构和形貌进行表征。从材料的晶体结构、恒流充放电测试和循环性能等方面分析掺杂元素Cr在改善材料性能中的作用。结果表明:掺Cr后的材料电化学循环稳定性得到较好的改善,首次放电容量达到83.3 mA.h/g,效率高达90.3%,循环20次后可逆容量保持率仍然有91.4%。  相似文献   

15.
从增加界面极化的角度出发,设计了两层和三层的钛酸钡/聚偏氟乙烯(BT/PVDF)复合材料,分别表示为PVDF||BT/PVDF和PVDF||BT/PVDF||PVDF,并通过溶液浇铸法结合旋涂法来制备这些层状复合材料。对复合材料中BT含量分别为7 vol%~45 vol%的复合材料进行了介电性能测量,结果表明,当总材料厚度相同时,一层、两层及三层复合材料介电常数分别为7~39、13~50和14~79,且都随BT含量和材料层数的增加逐步增大。多层BT/PVDF复合材料在40~1000 Hz范围内的介频谱测量结果显示,所制备的复合材料(BT,15 vol%)表现出强烈的极化弛豫现象,两层和三层材料表现更强,说明所设计材料的界面极化强度随结构的复杂程度而增强,由此导致复合材料介电常数的提高。本研究还测量了BT含量为7 vol%~45 vol%的3种复合材料的击穿性能,结果发现,当BT含量从7%增加到23%时,复合材料的击穿场强虽然呈下降趋势,但整体保持在100~45 k V/mm范围内。三层BT/PVDF复合材料击穿性能优于两层材料,说明所设计的多层结构对击穿性能影响较小。  相似文献   

16.
以超声波辅助沉淀法合成的纳米级球形FePO4·2H2O为原料,采用碳热还原法制备了复合金属掺杂的LiFePO4/C复合材料。通过X射线衍射(XRD),扫描电镜(SEM),恒电流充放电测试,循环伏安和交流阻抗测试表征了FePO4·2H2O和LiFePO4/C的物相、结构和电化学性能。结果表明,溶液浓度为0.1 mol/L时制备的FePO4·2H2O为分布均匀的纳米级球形颗粒。复合金属掺杂显著提高了LiFePO4的放电比容量,Ni和Nb复合掺杂的LiFePO4/C复合材料表现出了最佳的电化学性能,0.1 C倍率条件下首次放电容量158.8 mAh/g,1 C倍率下首次放电容量150.2 mAh/g,100次循环后容量保持率分别为98.30%和97.8%。Ni和Nb复合掺杂后提高了LiFePO4的锂离子扩散速率和电导率。  相似文献   

17.
利用微乳液法在温和条件下合成Li_2FeSiO_4/C的前驱体,煅烧后得到蠕虫形纳米Li_2FeSiO_4/C正极材料。用X射线衍射(XRD)、扫描电子显微镜(SEM)对材料的结构和形貌进行表征。通过恒流充放电对材料的电化学性能进行测试。结果表明,采用此法合成的前驱体在700℃煅烧9 h得到的蠕虫形Li_2FeSiO_4/C在室温、1.5~4.8 V的电压范围内,于C/16、C/8和1C倍率下的首次放电容量分别为140.1,139和94.0 mAh/g,循环20次后的容量保有率分别为96.4%,81.2%和73.5%。该样品具有良好的循环稳定性与倍率性能。  相似文献   

18.
溶胶-凝胶法制备LiFePO_4/C复合材料及其性能   总被引:3,自引:1,他引:2  
为了提高LiFePO4的电化学性能,以柠檬酸为络合剂和碳源,采用溶胶-凝胶法制备LiFePO4/C复合正极材料。采用FTIR和XRD等对前驱体及产物进行表征,并测试样品的电化学性能。结果表明:经700℃烧结10h所得产物具有单一的橄榄石型晶体结构,碳含量为10.81%(质量分数)。样品在0.1C下首次放电比容量为127.1mA·h/g,在0.2C、0.5C、1C下首次放电比容量分别为106.1、83.3、70.6mA·h/g。该样品在0.1C下经过20次循环后,容量还保持为126.3mA·h/g,衰减仅为0.035%。循环伏安和交流阻抗测试表明该材料具有较好的电化学性能。  相似文献   

19.
采用原位包覆法制备表面包覆Li1.3Al0.3Ti1.7(PO4)3(LATP)的Li Ni0.5Mn1.5O4(LNMO),即LNMO@LATP正极材料。采用X-射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)及电化学测试等手段对其物相结构、表面形貌及电化学性能进行研究。结果表明:LATP以无定型态紧密包覆于Li Ni0.5Mn1.5O4的表面,包覆层厚度约为5 nm。由于LATP包覆层具有保护电极材料表面和提高锂离子导电的双重作用,减少了电极过程的副反应,降低了电化学极化,提供了更多的锂离子扩散通道,导致LNMO@LATP具有比LNMO更稳定的循环性能和更好的倍率性能,特别是在高温的情况下。室温下在0.2C放电时,LNMO@LATP和LNMO的首次放电容量分别为141.5和142.6m A·h/g,经80次循环后,二者放电容量保持率分别达到99.2%和98.0%;而在10.0C放电时,LNMO@LATP和LNMO的首次放电容量分别为93.5和70.6 m A·h/g,经80次循环后,二者放电容量保持率分别达到66.1%和49.5%。当循环温度提高到55℃时,LNMO@LATP和LNMO在0.2C循环80次后的放电容量保持率分别为95.5%和79.2%;而在10.0C放电循环80次后,放电容量保持率分别为88.0%和51.0%。  相似文献   

20.
采用LiAc·2H2O作为锂源,利用熔盐碳热还原方法在较低的烧结温度和较短的烧结时间内(650℃,4h)合成纯相LiFePO4/C材料。扫描电镜照片显示这种方法合成的材料粒径大约为1μm,小于用Li2CO3作为锂源合成的材料。电化学测试表明,采用LiAc·2H2O作为锂源合成的材料表现出了高的放电容量和良好的倍率循环性能:在0.5C和5C倍率下,其首次放电容量分别为148mA.h/g和115mA.h/g;50次循环后,容量保持率分别为93%和89%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号